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Abstract 

The finding that the presentation of a choice (i.e., either as a loss or a gain) can affect and 

bias our willingness to engage in risk is one of the paramount findings of behavioral economics.  

First discussed by Tversky and Kahneman (1981), the framing effect demonstrates that when 

given two choices framed as a loss, we tend to become risk seeking.  However, when the exact 

same outcome is presented as a gain, we become risk averse, choosing the more conservative 

option, regardless of the actual expected value.  The effect is not limited to general research 

samples but has been demonstrated using domain specific frames in samples of educators 

(Fagley, Miller, & Jones, 1999), financial professionals (Roszkowski & Snelbecker, 1990), and 

physicians (Christensen, Heckerung, Mackesy-Amiti, Bernstein, & Elstein, 1995).  Despite 

extensive research on framing biases, the exact underlying mechanisms accounting for the effect 

have not yet fully been explained.  Extant studies have found relationships between various 

aspects of executive function (e.g., working memory and attention) and risky decision making, as 

well as links between mathematical ability and decision-making strategies, yet no work to date 

has fully explored the joint contribution of these factors, nor how they may contribute to or 

shield us from potential framing biases.  The present study utilized a battery of nine tasks 

measuring the constructs working memory, selective attention, inhibitory control, cognitive 

impulsivity, math achievement, general numeracy, math anxiety, and framing resistance to 

explore the joint contribution of executive ability and mathematical traits upon framing 

resistance.  While small correlations were found between the predictive measures and framing 

resistance, structural equation modelling explained little more than the Pearson coefficients.  The 

current data raises questions about the influence of age and life experience on framing bias 

within conventional methods of decision-making research.
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Chapter 1 
 

Introduction 

Kahneman and Tversky’s (1979) prospect theory is a classic and widely taught paradigm 

within both behavioral economics and cognitive psychology.  Prospect theory outlines the 

manner in which humans make decisions between risky options, and subsequent research has 

demonstrated we do so using fast, and often inaccurate, heuristics.  The novelty of Kahneman 

and Tversky’s theory was not that it demonstrated optimal decision making based on careful 

measurement of risk versus reward, but rather how we use simple mental shortcuts to arrive at 

suboptimal decisions due to the limited capacity of our cognitive systems.  The framing effect 

(Kahneman & Tversky, 1984), the finding that we can be biased to a decision based on its 

presentation as a loss or gain, is an extension of prospect theory which arguably has even deeper 

implications for theories of how our decision making is flawed and imprecise. These early 

findings of Kahneman and Tversky opened the door to a deeper discussion about human decision 

making and even fostered the development of the field of behavioral economics, eventually 

garnering Kahneman a 2002 Nobel Prize in economics sciences.  The Economist (2015) 

magazine recently named Kahneman the seventh most influential economist in the world, and yet 

he is a cognitive psychologist whose research has primarily focused on decision making.  Clearly 

this research has utility not only within the field of cognition, but also to those examining the 

more applied aspects of human behavior in financial domains.  The framing effect is of great 

interest to those within marketing, as contemporary marketing research is exploring framing 

biases in marketplaces including (but not limited to) hospitality (Mattila & Gao, 2017), fuels and 

energy (Moon, Bergey, Bove, & Robinson, 2016), tourism (Hall, 2016), and public opinion (Lee, 

Change, Kim, & Lee, 2016). 
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And yet, with all the adulation of Kahneman and Tversky’s work, there still remain many 

unanswered questions within the study of decision making.  The following will outline the basic 

findings of Kahneman and Tversky’s early work, culminating with the formulation of prospect 

theory and subsequent discovery of the framing effect.  Further, subsequent recent research will 

be discussed outlining the underlying mechanisms potentially accounting for decisions made 

under risk and our framing biases, including shortcomings within these current lines of inquiry.  

Particularly, while prospect theory and the related framing effects neatly demonstrate that people 

consistently make suboptimal, fast and frugal decisions, the underlying mechanisms which often 

result in poor decisions are not yet fully understood.  While several studies discussed below have 

attempted to examine how individual differences contribute to these behavioral outcomes, how 

these behaviors are influenced by the joint contribution of executive function, as well as 

differences in mathematical ability and math anxiety have yet to be examined. 

 

Prospect Theory and Framing Effects 

 Prior to the formulation of prospect theory, traditional approaches to human decision 

making looked something akin to expected utility theory (EUT).  Initially formulated by Swiss 

mathematician and physicist Daniel Bernoulli (1954), EUT proposes that decision in the face of 

risk is not reliant on carefully calculated, expected values of an outcome, but rather one’s 

personal accounting of the “utility” of the outcome.  For example, the expected utility of one 

dollar is far greater to a beggar than for someone with vast riches.  While this theory holds across 

some scenarios, subsequent research has demonstrated that a great deal of contextual variables 

can influence the outcome of these types of decisions.  Framing effects, which will be discussed 

in detail later, can have a large influence and bias decision making beyond utility.  While EUT 
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posited some basic guidelines, which may apply in decision making scenarios, the theory and 

subsequently proposed mathematical models are an oversimplification of behavior in the real 

world.  Curiously, EUT was the predominant view of how people made rational choices until the 

late 1970s when prospect theory emerged. 

Prospect theory (Kahneman & Tversky, 1979) differs from expected utility theory, 

positing that fair gambles are more attractive when we are anticipating a loss, than when we are 

expecting a gain.  That is, we are more likely to take the sure money bet even when a gamble 

with a larger payout is available.  Conversely, we are less likely to take a smaller but certain loss 

and would rather gamble for a chance to lose nothing or take a greater hit.  We are risk seeking 

in anticipation of loss, but risk averse in anticipation of a gain.  In their seminal paper, 

Kahneman and Tversky demonstrated behavioral evidence of this phenomenon, illustrating the 

shortcomings of EUT.   

In their early studies, Kahneman and Tversky define risky decision making as any 

scenario that gives a choice of options between prospects or gambles.  These prospects are 

essentially contracts yielding some outcome; sometimes these outcomes are certain (x), other 

times they are probabilistic (x, p).  In the classic EUT view of prospects, a prospect is an 

acceptable one if the resulting utility from integrating the prospect’s gains with one’s own wealth 

exceed the utility of those existing assets alone.  Individuals who prefer certain prospects (x) over 

gambles are characterized as “risk averse,” and this aversion was generally seen as the 

predominate form of behavior within EUT.  Kahneman and Tversky illustrate numerous 

decision-making phenomena violating these assumptions.   
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Kahneman and Tversky named the first of these violations the “certainty effect.”  Take 

for example the following problem (the values denote Israeli currency, of which the median net 

monthly income was roughly 3,000 in 1979): 

Choose between 

A:   

2,500 with probability .33 

2,400 with probability .66 

0 with probability .01 

B: 

2,400 with certainty. 

18% chose 82% chose 

 

Here, 82 percent of participants chose B, the certain choice of 2,400, even though A has an 

expected value of 2,409.  Now consider an additional problem. 

Choose between 

C:   

2,500 with probability .33 

0 with probability .67 

D: 

2,400 with probability .34 

0 with probability .66 

83% chose 17% chose 

 

In this second problem, participants overwhelmingly chose C, the option with a higher expected 

value.  The disparate types of responding seen between these two problems violates equations of 

expected utility characterized by French economist Allais (1953) and illustrates the certainty 

effect.  This finding however is not bound to problems containing sure bets, nor to simply 

monetary decisions. 



 

 5 

 Choose between 

A:   

50% chance to win a three-week tour of 

England, France and Italy 

B: 

A one-week tour of England, with certainty. 

22% chose 78% chose 

 

Choose between 

A:   

5% chance to win a three-week tour of 

England, France and Italy 

B: 

10% chance to win a one-week tour of 

England. 

67% chose 33% chose 

 

Here we see a similar pattern of responding when faced with scenarios involving a potential 

vacation outcome.  In the first example, participants tend to choose the outcome with certainty, 

but when forced to gamble take the prospect with a larger expected value.  These examples 

demonstrate that this violation is not bound simply to monetary choices, but rather generalize 

across domains.   

 A second finding in Kahneman and Tversky’s early prospect theory work is the 

“reflection effect.”  While the certainty effect demonstrated behaviors in scenarios involving 

gains, the reflection effect illustrates behaviors in the face of losing outcomes.  Specifically, if 

we change the monetary problems demonstrating the certainty effect from gains into potential 

losses we see responding switch, such that participants who are typically risk averse in the face 

of potential gains suddenly become risk seeking.  
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Choose between 

A:   

80% chance of losing 4,000  

20% chance of losing nothing 

B: 

Losing 3,000 with certainty. 

92% chose 8% chose 

 

This finding too violates the assumptions of EUT, as consistent with the above example, 

participants will consistently choose the option with a lower expected value.   

In addition to finding the seemingly disparate risk aversion profiles in the face of loss 

versus gain, Kahneman and Tversky found that individuals tend to disregard shared components 

between multiple options, and instead focus on the characteristics which distinguish them.  This 

finding is known as the “isolation effect.”  Take for example the following problem: 

Consider the following two-stage game. In the first stage, there is a probability of .75 to 

end the game without winning anything, and a probability of .25 to move into the second 

stage. If you reach the second stage, you have a choice between  

A: 

4,000 with a probability of .8  

B: 

3,000 with certainty 

 

Your choice must be made before the game starts, i.e., before the outcome of the first 

stage is known.  

Probabilistically, this scenario is no different than choosing between 4,000, .20 and 3,000, .25, 

and when testing this exact scenario 65% of respondents prefer the 4,000 choice.  However, in 

the above two-part scenario, participants overwhelming chose option B at a rate of 78%, wherein 
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most appear to be completely ignoring or isolating the first part of the scenario, opting to simply 

make a choice between 4,000, .8 or 3,000.  This is an interesting finding, as it demonstrates that 

people do not construct complete mental models of a problem, but rather focus on individual 

components, making decisions on limited amounts of data.  This is similar to the type of biases 

within the framing effect, wherein individuals tend to fixate on or “isolate” the framing language, 

subsequently biasing their decisions.  

 

Figure 1.  Tversky and Kahneman’s S-shaped function 

 

Following the development of prospect theory, Tversky and Kahneman (1981) examined 

how the wording or “framing” of choices in a task affects our decisions about those choices.  

Expanding on their previous research into prospect theory, the two explored whether the 

typically found S-shaped function (see Appendix A for a graph of the function), exhibited by 

participants in the face of probabilistic decisions, would shift on account of the questions’ 

framing.  Within their framing experiments, participants would be asked questions like the 

following:   
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Imagine that the U.S. is preparing for the outbreak of an unusual Asian disease, which is 

expected to kill 600 people.  Two alternative programs to combat the disease have been 

proposed.  Assume that the exact scientific estimate of the consequences of the programs is as 

follows: 

If Program A is adopted, 200 people will be saved. 

If Program B is adopted, there is 1/3 probability that 600 people will be saved, and 2/3 

probability that no people will be saved. 

Which of the two programs would you favor? 

Respondents to this question tend to be typically risk averse, with 72 percent choosing Program 

A, a finding which has been replicated by subsequent researchers even when examining the bias 

within samples of medical professionals (McGettigan, Sly, O’connell, Hill, & Henry, 1999).  

However, when two negatively framed programs (“people will die”) with the same expected 

values were proposed to a different group of respondents, a significant shift in responding 

occurs: 

If Program C is adopted, 400 people will die. 

If Program D is adopted, there is 1/3 probability that nobody will die, and 2/3 probability 

that 600 people will die.   

Which of the two programs would you favor? 

In this instance, most participants chose Program D over C to a frequency of 78 percent, a far 

more risk seeking pattern of responding.  Both pairs of scenarios have the same expected values 

(A = C; B = D), and yet we find a strong disparity in responding based on the verbiage of the 

choice.  This illustrates the typical finding of the framing effect; choices presented in a positive 

frame tend to be chosen more favorably (i.e., we are more risk averse), whereas choices 
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presented as a potential loss tend to be viewed less favorably (i.e., we become more risk 

seeking).  This behavior has been found even with domain-specific frames presented to educators 

(Fagley, Miller, & Jones, 1999), financial professionals (Roszkowski & Snelbecker, 1990), and 

physicians (Christensen, Heckerung, Mackesy-Amiti, Bernstein, & Elstein, 1995).  Kahneman 

and Tversky (1984) extend the mathematical function applied to prospect theory to describe the 

framing effect, essentially demonstrating that the framing of questions as either gains or losses 

exhibits the type of responding demonstrated in the function originally derived to explain risk 

seeking or risk averse behavior in the face of gains and losses. 

Tversky and Kahneman (1992) describe the decision-making process within all of the 

above examples as having two stages: 1) a beginning stage of editing, and 2) a stage of 

evaluation.  The editing portion is a beginning assessment of the offered choices, in an effort to 

simplify them representationally (not mathematically).  The second phase is an evaluation of the 

edited prospects to choose the one with more value.  Next, the editing phase will be discussed in 

greater detail, as the process itself relies heavily on executive resources, despite Kahneman and 

Tversky not addressing any constructs under the umbrella of executive function in their early 

works. 

 The first portion of the editing phase is the “coding” portion, wherein the prospects 

offered in a gamble or decision are encoded relative to a reference point.  This reference point in 

monetary scenarios is typically relative to one’s current wealth, but it applies across health and 

other domains as well.  This current state acts as the reference point, upon which the potential 

gains or losses of a prospect are weighed.  Following the “coding” portion is the “combination” 

phase, wherein an individual will combine outcomes with identical values (e.g., 100, .25; 100, 

.25 becomes 100, .50), allowing for a simpler evaluation.  Next is the “segregation” phase, where 
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prospects with a greater amount of risk are separated from those prospects which are more 

certain (e.g., 100, .80; 50, 1.0 is reconstructed as a sure gain of 50 and a risky prospect of 100, 

.80).  All of these processes should require the engagement of working memory for the 

corresponding operation or representational manipulation.  Despite this, Kahneman and Tversky 

never explicitly discuss the cognitive underpinnings of the editing phases.  One can infer some of 

the underlying processes from the resulting behavioral responses seen in risky choice problems, 

as later we will discuss several studies attempting to pin down the underlying characteristics 

accounting for prospect decisions and framing biases.  However, the full breadth of the 

underlying cognitions contributing to these processes, as well as the influence of individual 

differences is yet to be fully elucidated. 

 “Cancellation” is an additional portion of the editing phase, and one not so dependent on 

executive function, but rather the absence of it.  As in the example problem given to describe the 

isolation effect earlier, cancellation is the process of essentially ignoring attributes of a problem 

that are shared across multiple prospects.  For example, if one prospect has a 20 percent chance 

of winning $500 and a 10 percent chance of losing $100, and a second prospect has a 40 percent 

chance of winning $200 and a 10 percent chance of losing $100, the possibility of losing then 

gets ignored across both prospects.  Much like our usage of heuristics as mental shortcuts, this 

cancelation reduces computational load, and yet can alter responding such that we miss the 

overall probability of an outcome.  The anomalies found within the problems described above 

may be the result of editing prospects, as our edits are quick, potentially error prone, and not 

computationally exacting.  As such, it begs the question, do differences in one’s math ability and 

executive resources play a large part in the types of responding participants make in the face of 
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prospects?  Are individuals with a greater degree of mathematical fluency and sophistication less 

apt to “isolate,” opting to calculate expected outcomes instead?  

 Following this editing phase, individuals evaluate the now-edited prospects and choose 

the one of highest value.   Of note here is the resulting outcomes are changes in wealth or 

welfare, rather than isolated states.  This type of evaluation is more like a decision based on a 

change in states, rather than some isolated finite position.  In this sense, evaluation is similar to 

basic principles in perception, wherein individuals are responding to differences in sensory 

stimuli, whether it is brightness, physical size, loudness, or temperature; contextual components 

and previous experience shape perception of the current sensory inputs.  Kahneman and Tversky 

(1979) argue that the same contextual and experiential attributes are important to judgments of 

risk outcomes, as one person’s level of wealth may very well be poverty for another wealthier 

person.   

These phases outlined by Kahneman and Tversky serve rather as descriptives for the 

basic underlying procedure of decision making; however, it must be considered that this form of 

decision making itself is a byproduct of a limited cognitive system, one that uses quick and 

inaccurate heuristics to make decisions.  This begs the question: to what degree do differences in 

cognitive ability affect decision making; or alternatively, with sufficient cognitive resources, 

might people not rely on these shortcuts at all?  A wide array of research has demonstrated the 

impact of variations in executive functions on problem solving ability, including topics such as 

arithmetic (Mazzocco & Kover, 2007), spatial reasoning (Greenberg, Bellana, & Bialystok, 

2013; Handley, Capon, Copp, & Harper, 2002), and syllogistic reasoning (Gilhooly & Fioratou, 

2009).  It stands to reason that these same underlying constructs (i.e., working memory, 
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attention, inhibitory control) must have some influence on our reliance or lack thereof on 

shortcuts in risky decision making. 

 

Decision Making and Executive Function 

The term executive function is used to describe several aspects of higher order cognitive 

processes including attention, working memory, inhibitory control, abstract reasoning, problem 

solving, emotional regulation, mental simulation and planning (Diamond, 2013; Miyake, 

Friedman, Emerson, Witzki, & Howerter, 2000).  For the purposes of this study however, we 

focus on topics relating particularly to those aspects of executive function that appear to be most 

critical for decision making, namely; attentional components including inhibition and selective 

attention, and working memory.  Recent work exploring the relationships between these 

constructs and decision-making processes will be discussed in greater detail below.  

 Before discussing more experimentally-driven approaches to modelling decision making 

and the contributions of executive function, it is important to mention a model proposed by 

Gigerenzer and Goldstein (1996).  Using algorithmic computer models, the pair eloquently 

illustrated how our limited cognitive systems result in “bounded” forms of rationality, arguably 

an extension of Simon’s (1956) notion of satisficing.  That is, with limited time and a finite 

amount of processing power, we come to conclusions about given scenarios using rational 

systems bounded by these constraints, often simply choosing a solution which may not be 

optimal, but exceeds some threshold compared to alternatives.  With their approach, Gigerenzer 

and Goldstein demonstrate multiple methods that can be used to arrive at solutions with this 

limited system.  The models include such approaches as “take the best” or “take the last” in a 

series of items presented, methods that seem not terribly dissimilar from the heuristic approaches 
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discussed by Tversky and Kahneman (1975).  The models proposed by Gigerenzer and Goldstein 

however are contingent on a particular allowance of computational abilities and parameters. That 

is, with fixed states and availability of resources, their estimates were something akin to the 

mean of a population.  While this might serve as a proxy for how we most often make decisions, 

this type of modeling fails to account for the myriad of human variability.  A model of reasoning 

might demonstrate entirely different patterns of responding given a better algorithm (i.e., a proxy 

for more mathematical ability) and more computational resources (i.e., better executive ability).  

Further, their model does not account for potential dual-process approaches to reasoning, a topic 

we will discuss in greater detail later. 

 More recently, efforts have been made to examine the relationship between executive 

abilities and decision-making performance using large task batteries and big samples.  One such 

study used a collection of tasks to examine the relationships between several executive 

constructs (Del Missier, Mäntylä, & de Bruin, 2012).  This included working memory (tested 

using a letter span and n-back tasks), inhibitory aspects of attention (stop-signal and Stroop 

tasks), Raven’s progressive matrices (fluid intelligence), and probability judgment ability 

(measured via an 11-item measure).  Additionally, participants completed several decision-

making tasks including the Iowa gambling task, consistency in perception of risk, the ability to 

apply decision rules, and a resistance to framing measure.  Of particular interest was that the 

letter-memory task (a working memory measure) had a statistically significant moderate 

correlation with performance on the applying rules task.  This measure also had a moderate 

correlation with fluid intelligence measures and probability judgment scores.  Curiously, the 

letter-memory task did not demonstrate a statistically significant relationship to any of the other 

risk and decision-making tasks.  N-back performance, the additional working memory measure, 
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had a statistically significant moderate positive correlation with confidence measures on the 

decision-making task, yet no statistically significant relationship with any of the other decision-

making measures.  It is important to note here that past research has demonstrated n-back tasks 

to be a poor proxy for working memory performance (Kane, Conway, Miura, & Colflesh, 2007), 

and the letter span task (a single task procedure) is arguably a less valid measure of working 

memory ability compared to better standards such as rotation span or symmetry span (Draheim, 

Harrison, Embretson, & Engle, 2016).  Ultimately Del Missier et al.’s study, while ambitious in 

scope, missed the mark with measures that falter as appropriate indices of executive function, 

resulting in underpowered results and lackluster coefficients between the measures.  More 

accurate and robust assessments coupled with better statistical approaches, proposed later in this 

paper, offer a more optimal approach to exploring the relationship between executive functions 

and decision making under risk. 

 Developmental research has attempted to identify the underlying factors contributing to 

our “cognitive sophistication” in decision making (Toplak, West, & Stanovich, 2014).  Here 

researchers examined performance on a battery of tasks of students across second through ninth 

grade.  Measuring such factors as fluid intelligence, Stroop performance, working memory via 

sentence span, as well as thinking dispositions via the need for cognition scale, performance on 

these tasks was compared to rational thinking ability measured via belief bias syllogisms, base 

rate sensitivity, and framing resistance.  The correlational analysis using composite z-scores 

reported here demonstrate a strong relationship between a composite score comprised of 

executive function measures (r =.65) and moderate relationship with thinking disposition (r 

=.28) to performance on reasoning tasks.  While this is marginally compelling, the nature of the 

analysis gives this study limited utility, as more complex methods, such as structural equation 
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modelling, would have been a more appropriate fit for the type and amount of data collected (N= 

204).  Utilizing latent variables (reducing explanatory power) in lieu of composite z-scores 

typically yields a more compelling picture of the relationships between factors within a task 

battery (Kline, 2015). 

 Another study using a large task battery examined the contributions of multiple executive 

functions to decision making in the “Applying Decision Rules” or ADR and the “Consistency in 

Risk Perception” CRP tasks (Del Missier, Mäntylä, & de Bruin, 2010).  The ADR task requires 

participants to use a given procedure in the selection of choice (e.g., buying a DVD player).  The 

DVD players in one such scenario would vary on features such as picture quality, and 

participants would be instructed to use approaches including satisficing or lexicographic (i.e., 

choose based on a most important attribute, then select on secondary attributes).  The CRP task 

asks participants questions such as “what is the probability that you will get into a car accident 

while driving during the next year?”  The same question will then be asked a second time, but 

evaluating a longer time line (e.g., 5 years); performance is then graded based on individuals’ 

consistency in their projection of risk across the given durations.  The researchers additionally 

collected data testing participants’ ability to update working memory representations, shift 

between tasks and information sets, and inhibit responses to stimuli.  The results indicated the 

ADR task had a moderate relationship with shifting ability, while the CRP had moderate 

relationships with performance on the updating tasks.  Specifically, as shifting and updating 

ability increased, so too did performance on the ADR and CRP tasks respectively.  Of note here 

is the theory that both shifting and updating are considered to be functions of working memory 

(Miyake, et al., 2000).  Surprisingly, no measures of mathematical ability were collected, as it 
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could be posited that consistency in risk projections would vary as a function of an individual’s 

ability to scale probabilities over time. 

 A compelling experiment examined the relationship between working-memory load and 

impulsivity (Hinson, Jameson, & Whitney, 2003).  Particularly, this study further examined the 

phenomenon of delay discounting, the finding that immediately available reward (as opposed to 

time delayed) has a greater effect on performance (Myerson & Green, 1995).  Here, Hinson et al. 

loaded participants’ working memory (particularly, their phonological loop) by having them 

remember a string of five numbers and report on the numbers after making a monetary judgment.  

The monetary judgment required participants to make a decision between two hypothetical 

options; the first, a smaller amount of money ranging from $100 – $900 available immediately, 

and the second option ranging from $1,100 - $2,000 available after some delay ranging from as 

short as 1 week to as long as 2 years.  In a control block of the task, participants completed this 

monetary judgment under no working memory load.  The results indicated participants 

demonstrated greater amounts of impulsivity while under working memory load. That is, they 

had a lower propensity to take the delayed but higher value reward while their executive 

resources were taxed.  This finding is of particular interest, as while impulsivity might be a 

characteristic or trait which can have some degree of stability individual to individual, simple 

manipulations of cognitive load can have a state dependent effect on decision making, 

demonstrating some influence of executive function on delay discounting.  Surprisingly, this 

study collected no measure of inhibitory control, a construct also related to risk taking (White, 

McDermott, Degnan, Henderson, & Fox, 2011). 

 Elsey et al. (2016) examined the relationship between selective attention and risk, 

administering a battery of tasks to assessing attention, impulsivity, anxiety, and risk-taking 
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behaviors.  Particularly, anxiety was measured using the Multidimensional Anxiety Scale for 

Children (MASC; March, 1997), the Balloon Analogue Risk Task (BART) was administered as 

a proxy for a child’s willingness to engage in risk (Lejuez et al., 2002), and impulsivity was 

assessed using the Barratt Impulsiveness Scale (Patton, Stanford, & Barratt, 1995).  Additionally, 

participants’ attention was measured during an fMRI scan in which tasks assessing both selective 

and divided attention were administered.  Critical for the aims of the present study, brain 

activation during selective attention and divided attention tasks was positively correlated with 

BART performance (i.e., as propensity for risk reduced, participants were more likely to exhibit 

fMRI patterns associated with higher attentional control).  This relationship may underlie an 

early life trajectory that extends into adult behaviors such as diminished risk assessment ability if 

an individual possesses lower amounts of selective or inhibitory attentional control.  

Another compelling finding from Elsey et al.’s (2016) study was that participants scoring 

higher on the anxiety measure showed reduced recruitment of frontoparietal networks during the 

attentional tasks, an area of the cortex associated with multiple aspects of executive function.  

The authors hesitate to take a strong stance on the underlying cause for this but argue it may be 

due to individual inability to cope with the task.  This resulted in behavioral disengagement from 

the task, and subsequently lower levels of frontoparietal activation.  Relatedly, within the domain 

of mathematical cognition we repeatedly find that individuals high in math anxiety exhibit a 

global pattern of math avoidance, whether via taking fewer math courses in college or by simply 

disengaging from math problems that are mentally demanding (Hembree, 1990).  These same 

math avoidant behaviors may influence risky decision making, with those exhibiting high math 

anxiety more readily succumbing to framing biases rather than calculating expected value of an 

outcome.  Research on inhibitory control and decision making when gambling has found similar 
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effects to the aforementioned study (Stevens et al., 2015), finding that inducing behaviors which 

mimic inhibitory response (i.e., inducing a delayed response via stop signal) results in more 

conservative bets.  This may be a generalized phenomenon wherein inhibitory control, whether 

facilitated by an internal locus of control or external signal, has a positive influence on decision 

making in the face of risk. 

 Similar effects have been found regarding the central tendency bias, the finding that we 

tend to underestimate values above a groups average, and overestimate values below a groups 

average, tethering evaluations to the center of a distribution and failing to notice deviations 

below or beyond the mean (Goldstone, 1994).  In a recent study, researchers tested whether high 

amounts of cognitive load would cause participants to exhibit a greater central tendency bias 

(Allred, Crawford, Duffy, & Smith, 2016).  In their experiment, researchers manipulated 

working memory load, requiring participants to either retain two or six digits in working memory 

while performing a primary task.  The primary task was to adjust a target line to match a 

presented line displayed for 1.5 seconds prior to the target.  This essentially served to measure 

their central tendency bias in a visual task using line lengths as stimuli.  The results indicated that 

cognitive load increases central tendency effects, as participants exhibited a greater propensity to 

produce closer to average line lengths under the high load condition.  This finding is compelling, 

as it demonstrates a pronounced central tendency bias in basic perceptual judgments.  From this 

we can infer that in other domains where a central tendency bias has been found (e.g., Likert 

scale judgments; James, Demaree, & Wolf, 1984), presumably requiring more engagement of 

executive resources to produce subject judgments, we will find a similar increase in central 

tendency when under cognitive load (or with lower executive resources available). 
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Several researchers have proposed theories of dual reasoning systems for decision 

making (Evans, 2003; Sloman, 1996).  While there are slight differences proposed between these 

models, the underlying assumptions posit two basic systems.  The first system is reliant on prior 

knowledge, beliefs, and experience, resulting in heuristic usage and/or habituated, non-critical 

lines of decision making.  The second system is analytical, and facilitates reasoning in a more 

logical manner, weighing pros and cons, calculating expected outcomes.  The system reliant on 

existing knowledge operates rapidly with little computational demand, whereas the logical 

system is slower and demanding of executive resources.  These systems can however sometimes 

function concurrently, wherein an individual may engage more executive resources to reason 

through a problem, only to ultimately be influenced or biased by an existing heuristic shortcut.  

Conversely, the analytic system may sometimes override the belief-generated response of the 

heuristic system (Stanovich & West, 2000).  However, the criteria around who, when, and why 

or how one of these two systems dominate any given scenario is yet to be fully explained by the 

literature.   

Neys (2006) attempted to explore the relationship between the dual-process model of 

reasoning and an individual’s level of working memory.  Specifically, this study examined the 

relationship between working memory scores on the Operation Span task (La Pointe & Engle, 

1990) and reasoning performance under load.  The reasoning task consisted of basic syllogistic 

reasoning problems, where participants had to judge whether or not a conclusion logically 

followed two premises (e.g., Premises: All fruits can be eaten.  Hamburgers can be eaten.  

Conclusion: Hamburgers are fruits.).  Some of the conclusions to the syllogisms were in conflict 

with believability (e.g., Premises: All flowers are animals.  All animals can jump.  Conclusion: 

Flowers can jump.) but followed logically from the premises.  An additional dual task 
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manipulation was added to the reasoning portion in the form of a dot memory task where 

participants were presented with a matrix of dots prior to the reasoning problem.  After 

responding to the reasoning problem, answering whether the conclusion correctly followed the 

premises, they had to recall the arrangement of the dot matrix.  In the low working-memory load 

condition, the matrix consisted of three dots in a horizontal line, whereas in the high load 

condition participants needed to remember a more complex four dot array.  There was no 

difference in performance between the low, medium, and high working memory groups across 

low and high load conditions in the reasoning task for non-conflict syllogisms.  However, when 

the syllogism was in conflict with believability, the high working memory group outperformed 

both the medium and low working memory groups in both low and high load conditions.  The 

low working-memory group performed particularly poorly under high load for the conflict 

syllogisms. 

Neys (2006) interprets these results across groups as being a result of reliance on one of 

the two dual-process systems for reasoning.  When under high load, those with lower working-

memory ability do not inhibit the non-plausibility of a conflict syllogism to arrive at a correct 

conclusion, instead simply producing a response based on experience regardless of syllogistic 

logic.  Conversely, the high working-memory group, with resources to spare under load can still 

correctly represent and assess the given conclusion.  This has implications for the present study, 

as this dual-process system might very well underlie different types of responding when 

presented with a frame.  Those with higher executive resources may opt to calculate an expected 

value of two given framing scenarios, modeling both and holding those representations in 

working memory.  Those with lower amounts of executive resources may err by simply 

succumbing to the valence (e.g., lives saved vs. lives lost) of the frame.  However, this dual-
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processing approach has not yet been fully examined within framing task performance, or with a 

large battery of tasks measuring aspects of working memory, attentional control, or math ability 

to propose a more robust model of the contributing cognitive factors.  A novel study (Slothuus, 

2008) has proposed a dual-process model for framing effects, but the scope of the design focused 

on measures of values and political affiliation, and their relationship to the judgments of political 

legislation.   

The aforementioned dual systems may account for the findings of many of these studies.  

When free of load, with sufficient executive resources, many individuals may default to the 

analytical approach to problem solving.  However, once under load, it could be that the logical 

system falters, and we regress to reliance on shortcuts and available pieces of prior knowledge.  

The same phenomenon may occur when a prospect or frame requires too many resources within 

the editing phase.  Some studies have demonstrated that in scenarios where this cognitive burden 

is lessened, whether by varying the features of prospect (e.g., from a word problem to discrete 

figures, or from a written presentation to a visual one) or prompting an individual to derive a 

solution from experience, individuals alter which of the dual systems become utilized to make a 

decision, even when faced with a biasing frame.   

A study examining the presentation format of frames and its effect on decisions made by 

police officers found effects akin to this notion, demonstrating the presentation format of 

numerical information influenced framing biases (Garcia-Retamero & Dhami, 2013).  

Experienced police officers were administered a framing task in which they were given scenarios 

about terrorist identification techniques.  A positive frame in this task is as follows: “When using 

this technique, 91 in 100 known terror suspects who organized and committed an attack were 

correctly identified as posing an imminent danger.”  A negative frame would word this scenario 
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as “9 in 100… were not correctly identified.”  The participants then had to indicate whether or 

not they would implement the screening program or technique.  As expected, the sample of 

police officers exhibited the anticipated framing effect found across most samples and 

professions, with the positive frame viewed more favorably than the negative.  In an additional 

condition, researchers added visual aids in the form of icons demonstrating the proportion of 

individuals identified or not identified in a sample of terrorist suspects.  When the visual aid was 

added, regardless of the accompanying framing vignette, participants exhibited no framing 

effect, and exhibited greater confidence in their decision to choose one program over another.  

The researchers interpreted this effect as being a byproduct of more elaborate, “quantitative 

processing” of the numerical information.  That is, in not having to manipulate the numerical 

information into a representational format, per Kahneman and Tversky’s editing phase, executive 

resources are not taxed, and hence the framing effect is reduced.   

Further, recent work has demonstrated that one’s ability to construct representations of 

frames from experience reduces framing bias (Gonzalez & Mehlhorn, 2016).  That is, having 

more memory to draw upon lessens the effect.  Here, researchers examined the body of framing 

research to further explore how presentation format and experience affects performance.  As 

expected, their meta-analysis supports a conclusion that visual presentation results in reduced 

framing biases, as do framed scenarios which relate to an individual’s past experience.  

Collectively, these recent explorations of the framing effect demonstrate that any manipulation 

that allows for shortcutting of the editing phase results in less bias.  Simply put, taking a risky 

proposition out of numerical format and into a more visual representation results in less bias. 

One could further extrapolate upon this conclusion, hypothesizing that those with math deficits 
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or affective aversions to math should have a harder time editing propositions out of numerical 

space thus resulting in a propensity for greater reliance on frames. 

Some questions about these phenomena are still unanswered.  First, do those with better 

executive abilities rely less on the experience and context-based aspect of the dual system?  That 

is, are their decision-making processes when facing risk more analytic than the average predicted 

performance of research samples?  Second, to what end does mathematical achievement affect 

reasoning ability, particularly in times when a decision requires weighing the pros and cons of 

numerical information?  Further, some research has suggested, mathematical achievement may 

be influenced early on by individual differences in executive abilities and may be the result of a 

trajectory established as early as age 3 (Anobile, Stievano, & Burr, 2013; Steele, Karmiloff-

Smith, Cornish, & Scerif, 2012).  Do differences in decision-making performance vary as a 

function of math achievement, or is this ability all moderated by overall executive ability?  With 

this in mind, the following section will discuss the extant (but sparse) literature examining the 

relationship between mathematical ability and decision making. 

 

Arithmetic, Numerical Judgments, and Executive Function 

 While a modest amount of research has explored the independent relationships between 

executive functions and decision making, very little work has examined the relationships 

between arithmetic abilities and decision making.  There does however exist a body of evidence 

examining the contributions of executive function to the development and mathematical fluency 

of arithmetic abilities (i.e., better executive ability = better math skills).  There is a strong 

possibility that an underexplored mediating factor in decision making under risk is arithmetic 

ability.  If given infinite time and procedural knowledge to weigh the values of two prospective 



 

 24 

options, it is likely we would arrive at decisions more akin to calculation of expected values with 

less bias resulting from framed language.  The following section will discuss the extant literature 

covering the relationship between arithmetic abilities and executive function, giving attention 

(when available) to relationships between arithmetic abilities and decision-making research. 

As discussed previously, one critical aspect of executive function is working memory.  

While some debate exists about the underlying components of working memory, the construct 

itself is generally agreed to be a system of mechanisms responsible for the integration, 

manipulation, and temporary storage of information in a person’s current locus of attention 

(Miyake & Shah, 1999).  Simply put, it is the “mental workbench” of our cognition, and a core 

component of the higher-order construct referred to as executive function (Baddeley, Della Sala, 

& Robbins, 1996; Miyake, et al., 2000).  Critical for the focus of the present study is the finding 

that working memory is imperative for basic mathematical abilities including mental arithmetic 

(DeStefano & Lefevre, 2004).  Typically, studies within the domain of mathematical cognition 

utilize a dual-task approach to examine the particular contributions of working memory to 

arithmetic ability.  One such example of this is Seyler, Kirk, and Ashcraft’s (2003) study, which 

demonstrated that subtraction problems requiring the participant to borrow (i.e., taking a 1 from 

the tens column to the singles) utilizes working memory resources, and causes diminished letter 

recall performance when administered as a dual-task. 

Further, the contribution of working memory in the development of arithmetic abilities 

has been examined across numerous elementary-school-aged samples.  Even after controlling for 

such factors as overall intelligence and a child’s in-class attentiveness, performance on working 

memory tasks is predictive of the development of more sophisticated counting and calculation 

strategies in basic addition (Geary, Hoard, & Nugent, 2012).  Typically developing later than 
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counting based strategies in addition, children eventually memorize the basic arithmetic facts, 

allowing older children and adults to simply recall the facts from memory when presented with 

basic problems.  Even this shift from strategy use to memorization has been found to be hindered 

by lower working memory capacity (Barrouillet & Lépine, 2005).  For a full review of 

comparable developmental studies see Raghubar, Barnes, and Hecht (2010). 

Similar studies have examined the relationship between other components of our 

executive function and math performance, particularly sustained selective attention and 

inhibitory attentional control.  In one such study examining this relationship, children around the 

age of 10 completed an object tracking task measuring visual sustained attention, and a battery of 

math tasks including Arabic numeral reading, writing, multiplication, addition, subtraction, and 

counting, along with an additional measure of reading ability (Anobile, Stievano, & Burr, 2013).  

Overall, the findings suggested a relationship between attention and math ability, however a 

similar relationship was not found between attention and reading performance.  Similar results 

were found in an even younger sample of children ages 3 to 6 tested longitudinally (Steele, 

Karmiloff-Smith, Cornish, & Scerif, 2012).  This study measured both sustained attention and 

selective attention in conjunction with basic counting and arithmetic tasks. The study 

demonstrated that the attentional measures were not only predictive of a child’s current 

mathematical ability, but also predicted performance on math tasks one year later, a finding that 

has been corroborated by subsequent research (Hassinger-Das, Jordan, Glutting, Irwin, & Dyson, 

2014). 

Recently, efforts have been made to bridge and examine the collective contributions of 

these constructs (i.e., attention and working memory), which underlie executive function to 

determine their joint contribution to mathematical development and performance (Fuhs, 
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Hornburg, & McNeil, 2016; Samuels, Tournaki, Blackman, & Zilinski, 2016).  Critically, these 

studies demonstrate that multiple underlying components including selective attention and 

inhibitory control, along with multiple measures of working memory independently contribute to 

developmental trajectories of math performance.  Important for the present study is the finding 

that aspects of attention as well as working memory contribute jointly to basic arithmetic 

abilities.  If one accepts the assumption that some individuals when presented with a risky 

prospect will compute some basic evaluation of expected values using mental arithmetic, then 

their performance should demonstrate a joint contribution of these individuals’ overall executive 

abilities and mathematical ability.  Further, while inhibitory or selective aspects of attention have 

clear contributions to the development of mathematical abilities, our ability to inhibit or select 

from an array of relevant and irrelevant information within a risk prospect may also vary as a 

function of this aspect of executive control (i.e., the ability to ignore a frame and attend to the 

relevant pieces of information). 

 If one examines the canon of tasks within mathematical cognition looking for a near 

proxy to Kahnenman and Tversky’s prospect theory experiments, the classic number comparison 

task has some similar rudiments.  Here, participants judge between two displayed numbers as to 

which is larger in value, responding typically via button press (Dehaene, Dupoux, & Mehler, 

1990).  Within this task, we find a standard artifact known as the “numerical distance effect,” in 

which participants’ response times are inversely related to numerical distance.  That is, 

participants are faster and more accurate at indicating which of two numbers is larger (or 

smaller) when the numerical distance separating the two numbers is relatively large (e.g., 2 and 

7) than when it is comparatively small (e.g., 3 and 2).  It is theorized that the presentation of a 

single number not only activates the mental representation of that number, but also its 
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surrounding neighbors (e.g., viewing the number 2 also activates the numbers 1 and 3).  This 

basic effect is not all that compelling or relevant to the present topic of this paper; however, this 

basic phenomenon has been found to become even more pronounced in those with high levels of 

math anxiety (Maloney, Ansari, & Fugelsang, 2011).  If basic number comparison tasks cause 

such interactions with math anxiety, it should be expected that more complex numerical tasks in 

the judgment of risk (i.e., prospect or framing decisions) will produce similar interactions with 

math anxiety.  Further, one of the prevailing theories of mathematics anxiety is that the 

ruminations associated with high levels of math anxiety compromise available working memory, 

resulting in impaired performance in numerical and mathematics tasks (Ashcraft & Kirk, 2001).  

Hence, when tasked to choose between two risk scenarios requiring manipulations within 

working memory, interactions with math anxiety should be expected. 

Recently a model was proposed demonstrating the processes in which symbolic 

magnitudes are weighed and evaluated in working memory (Chen, Lu, & Holyoak, 2014).  Here, 

Chen et al. evaluated the extant literature covering the comparison of symbolic magnitudes 

across an array of features; from basic assessments like smaller or larger, to more abstract 

scenarios such as judging between two animals as to which is fiercer or smarter.  The proposed 

mathematical model based on their findings, known as the Bayseian Anology with Relational 

Transformations (BARTlet), outlines how people produce judgments by applying “dimension-

specific weights,” similar to Kahnenman and Tversky’s (1979) notion of contextual reference 

points.  The responses generated to two symbolic options are formed and manipulated in 

working memory, and are sensitive to contextual influences (e.g., a question’s polarity, “smaller” 

or “larger”).  While this model does not address the specifics of how frame affects magnitude 

judgments, polarity may very well serve as a proxy for frame and result in a similar predictive 
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model if applied here.  Further, adding an affective profile, which interacts with working 

memory in the form of math anxiety, along with varied math ability, make modeling behaviors in 

the face of framing a bit muddier.  It is likely there are contributions from all of these underlying 

factors affecting our behavioral outcomes in the face of risk. 

 A recent study examined the relationship between numerical abilities, affective 

components like fear or hope, and our propensity to overweigh or under weigh risks (Petrova, 

Pligt, & Garcia-Retamero, 2014).  In the task assessing risk, participants were told to imagine 

they owned a camera worth 500 Euros, and that they were acquiring insurance to protect the 

camera from loss or theft.  In a neutral condition, the camera was said to be purchased from a 

website.  In an affective condition, the camera was a birthday present from their favorite 

grandfather.  In a reappraisal condition, the participants were instructed to additionally note two 

or three strategies they could use to mitigate the emotional pain or positive affect resulting from 

either the loss or gain of the camera.  Participants were presented with probabilities of the 

likelihood of the camera being lost and told that they had 500 Euros to spend on insurance to 

avoid the loss with a certain probability.  In addition to deciding an amount they would spend on 

an insurance premium, participants then indicated on a scale from 0 to 100 their degree of fear of 

losing their camera.  Each participant also completed the Berlin Numeracy Test (Cokely, 

Galesic, & Schulz, 2012).  The results indicated participants showed an overweighting of the 

likelihood of loss in the affective conditions and were thus more likely to pay a higher premium.  

Those with higher numeracy exhibited more linear responding in their insurance premium choice 

relative to potential risk, an effect that was more pronounced when given the reappraisal 

instructions (i.e., more critical thinking about the loss resulted in more rational strategies for risk 

mitigation).  These findings have compelling implications for this current study, particularly, that 
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affective components play a role in risk mitigation, as we might expect with math anxiety.  

Further, this seems to suggest that individuals with greater numerical ability are better at 

mitigating affective components of risk, particularly when given more time to engage in 

elaborative thinking (i.e., constructing more precise representations of two options via the use of 

executive resources). 
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Chapter 2 

Current Study 

 In order to examine the joint contributions of executive function (i.e., working memory, 

inhibitory control, selective attention), fluency with basic probabilities, math achievement, and 

math anxiety upon framing biases, the experiment utilized a battery of tasks to accurately assess 

all of these underlying constructs.  This resulted in a large data set, permitting a more robust 

form of statistical analysis; structural equation modelling (SEM). SEM has not been commonly 

employed in the examination of framing effects but is regarded as having a great deal of efficacy 

in examining individual differences and their contribution to behavioral outcomes within a 

dependent measure of interest (MacCallum & Austin, 2000).   

It was expected that individuals with better performance on measures of executive control 

will show a less pronounced framing bias than their peers, as some preliminary evidence exists 

for this assertion (Del Missier, Mäntylä, & de Bruin, 2010).  Further, as demonstrated in the 

introduction, there exists a strong relationship between executive functions and the development 

of mathematical fluency.  As such, it was also expected that there may be a high amount of 

covariance between measures of executive function and math achievement.  However, the 

statistical methods employed for our analysis allow for examination of the interaction between 

math achievement and executive functions, such that detection of the influence of math 

achievement on framing bias over and above executive function is possible.  Simply put, it was 

expected that those individuals with better performance on executive measures coupled with high 

measures of math achievement would be the most resistant to framing biases.   

Further, given the relationship between working memory and math anxiety, it was 

expected that when confronted with probability judgments within a framing prospect, those with 
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high measures of math anxiety would exhibit a greater framing bias, succumbing more readily to 

prospect’s framing language, and exhibiting math avoidant behavior we find in other 

performance scenarios.  Given however that the mechanism underlying performance deficits in 

those with math anxiety is the taxation of working memory resources, it is possible that 

individuals with higher amounts of executive function coupled with math anxiety may see a less 

pronounced framing bias than their peers with a lower degree of executive ability and high levels 

of math anxiety.    
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Chapter 3 

Method 

Participants 

 Two-hundred undergraduates (137 female, mean age = 20.6 yrs.) from the University of 

Nevada Las Vegas participated in this study and received course credit upon completion.  Ten 

participants were not included in subsequent analyses due to data loss, experimenter error, or the 

subject not adhering to protocol, resulting in a combined dataset of one-hundred and ninety 

participants.  Given accepted sample standards (minimum N = 180) for the implementation of 

structural equation modeling (SEM; Kline, 2015) and the standards within individual differences 

research, two-hundred was adequate.  Further, the rule of N:q puts this study at an estimate of 

180 required participants, wherein q is the number of observed variables (9 in this battery), and N 

represents the number of required participants per variable, generally to the ratio of 20:1 (Kline, 

2015).  Additional samples were collected to account for attrition or experimenter error and serve 

to potentially give more explanatory power to the models.   

 

Materials and Procedure 

Executive Function - Working Memory Tasks 

Rotation span – The rotation span task is a complex span measure requiring participants 

to remember a sequence of long and short arrows presented one at a time in sequence (Harrison 

et al., 2013).  The randomly presented set sizes can vary from 2 to 5 items, and participants must 

select the arrows from a random array in the order that they appeared.  Each set size is presented 

three times for a total of twelve trials.  The secondary task of this dual-task measure requires 
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participants to assess whether a rotated letter is forward-facing or mirror-reversed.  These letters 

need to be mentally rotated, as they are offset from their typical orientation in addition to being 

potentially mirror-reversed.  Participants enter a yes or no response judgment via key press as to 

the mirrored orientation of these letters prior to reporting the arrow span sequence they viewed at 

the start of a trial.  Performance results in a dependent measure in the form of a partial span 

score, the number of arrows recalled in the correct order. Recent evidence has demonstrated that 

rotation and symmetry span tasks have higher psychometric validity than conventionally used 

operation span tasks (Draheim, Harrison, Embretson, & Engle, 2016) and as such should be 

considered the two paramount measurements in assessing working memory. 

Symmetry span – The symmetry span task requires participants to recall a series of 

squares presented serially within a 4 x 4 grid (Unsworth, Redick, Heitz, Broadway, & Engle, 

2009).  Again, set sizes range from 2 to 5 items in the 4 x 4 grid, presented in a random order.  

The secondary task has participants assess whether a figure presented within an 8 x 8 grid is 

symmetrical.  The dependent measure is again partial-span score, the number of squares recalled 

in the correct serial order.  Again, each set size is presented three times for a total of twelve 

trials.  This task, in conjunction with the rotation span, serves as a measurement of working 

memory within our overall assessment of executive function.   

Executive Function - Inhibitory Control / Selective Attention Tasks 

Stop Signal – A stop signal task is used as one measure of inhibitory control (Logan, 

1994; Salthouse, Atkinson, & Berish, 2003).  Particularly, the stop signal is characterized as a 

measure of one’s ability to inhibit an ongoing signal or habituated response.  This is in contrast 

to the ability to inhibit an irrelevant distractor, which is measured using a Stroop task discussed 

below.  In each trial of the stop signal task, an arrow (either < or >) is presented in the middle of 
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the screen, and participants are required to identify the direction of the arrow by a specific key 

press.  They are also instructed to not respond when they are cued with a corresponding “beep” 

sound immediately after the letter (i.e., the stop signal).  A pause occurs at the beginning of each 

trial 1000 ms before the arrow target. The stop signal, when present, follows between 200 and 

600 ms after the letter.  Participants are instructed to act as quickly and as accurately as possible 

before completing 3 blocks of 50 trials.  The dependent measure of this task is correct responses, 

(i.e., no response on a stop trial or an arrow press on a go trial).  The version of the task 

administered for this study used an adaptive mechanism and slowed the stop signal if participants 

waited until the end of a trial to respond, making it more difficult if participants chose to wait 

before making their response.  This implementation increases task difficulty and reduces the 

ability of participants to game the task by simply waiting until the end of the average latency 

window for the beep. 

Stroop – The classic Stroop task is a measure assessing participants’ ability to inhibit or 

ignore irrelevant but salient distractors (Lamers, Roelofs, & Rabeling-Keus, 2010; Stroop, 1935).  

Within the framing effect, the frames of a risk vignette (e.g., “deaths” vs. “lives saved”) exert an 

influence on responding in most participants; however, those who ignore the frame and choose 

based solely on expected utility of the choices might be accounted for by individual differences 

in inhibitory control, particularly toward distracting stimuli.  As such, the Stroop task is an 

appropriate addition to the present study’s test battery.  In our modified version of the Stoop, 

participants are randomly presented with a series of 96 word-triples.  The center triple is 

displayed in color (e.g., blue, green, yellow, red), with half the trials presenting a congruent 

stimulus word (e.g., the word “green” displayed in green), and the other half presented 

incongruent stimuli words (e.g., the word “green” displayed in yellow).  Participants are asked to 
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identify the color the word is printed in by pressing a key corresponding to one of the two 

surrounding words flanking the center word in the triple (e.g., “yellow” or “green”) surrounding 

the central target.  Participants are again instructed to respond as quickly and as accurately as 

possible.  The dependent measure in this task is reaction time. 

Cognitive Reflection Test – The Cognitive Reflection Test (CRT) is a measure designed 

to assess the ability to override intuitively available, yet incorrect answers to three basic story 

arithmetic problems (Frederick, 2005).  For example:  A bat and a ball cost $1.10 in total.  The 

bat costs $1.00 more than the ball.  How much does the ball cost?  The obvious impulse answer 

is “10 cents.”  However, with a moment more reflection, we quickly realize that a ball costing 10 

cents only leaves $1.00 remaining for the bat, resulting in a cost difference of 90 cents between 

the two items.  The correct answer is of course, 5 cents (See Appendix A for all three questions 

of the CRT).  A recent study demonstrated that the three questions of the CRT are a useful 

predictor of heuristic usage, demonstrating that individuals with a tendency to rely on mentally 

available information are more prone to making the obvious impulse responses to the CRT 

(Toplak, West, & Stanovich, 2011).  The same relationship has not been examined within the 

domain of prospect framing.  However, given related evidence, we should infer that participants 

who perform poorly on the CRT will exhibit a greater framing effect in the decision-making task 

discussed below.  Participants are allowed ten minutes to complete this measure. 

Math Achievement, Numeracy, & Math Anxiety 

Wide Range Achievement Test 3 – The arithmetic portion of the Wide Range 

Achievement Test 3 (WRAT) was administered to measure each participant’s math achievement.  

This mathematics assessment is a fifteen-minute test containing 40 items.  Problems range in 

difficulty from simple arithmetic and fractions, to solving for unknowns in linear equations.  
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Participants are given a point for each correct answer, and scores range from 0 to 40.  As 

opposed to the numeracy task discussed below, the WRAT assesses mathematical fluency across 

a larger selection of math abilities (see Appendix B for full WRAT questionnaire). 

Numeracy Scale – The 11-item numeracy scale assesses aspects of mathematical ability 

that may differentiate from overall mathematical achievement (Lipkus, Samsa, & Rimer, 2001).  

Specifically, the seven-item scale assesses how well participants can 1) perform simple 

mathematical operations on risk magnitudes, 2) convert from proportions to percentages and 

vice-versa, and 3) convert probabilities into proportions.  For example: If Person A’s risk of 

getting a disease is 1% in ten years, and person B’s risk is double that of A’s, what is B’s risk?  

While this scale will measure some of the abilities required for the WRAT, it assesses 

specifically the ability to implement the most basic of arithmetic procedures to calculate risk.  An 

individual may score poorly on the WRAT (e.g., < 20), but still possess the necessary abilities to 

answer all eleven items of numeracy scale correctly (See Appendix C for the numeracy scale).  

Participants are allowed ten minutes to complete this measure. 

Short Math Anxiety Rating Scale – The twenty-five item Short Math Anxiety Rating 

Scale (SMARS) measures participants’ level of math anxiety (Alexander & Martray, 1989).  The 

SMARS has participants rate math-related scenarios (e.g., “Having to use the tables in the back 

of a mathematics book”) on how much anxiety each scenario would elicit.  This is reported using 

a five-point scale ranging from “not at all anxious” to “highly anxious.”  An individual’s 

responses are totaled resulting in a math-anxiety score ranging from 25 to 125 (See Appendix D 

for full SMARS questionnaire). 
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Decision Making 

Framed Risky Decision Problems – The framing task consists of a total of fourteen 

framed risky choice problems.  Half of the problems are gain-framed (e.g., “lives saved” or “will 

live”) and half of the problems are loss-framed (e.g., “lives lost” or “will be killed”).  In each of 

these problems (see Appendix E), participants indicate which of the two choices they prefer 

when making the decision using a six-point scale ranging from “definitely would choose option 

1” to “definitely would choose option 2.”  This differs from the conventional framing paradigm 

proposed in Tversky and Kahneman’s (1981) original study in which the decision was merely 

binary.  Recent evidence found in the development of a shorter 7-item “resistance to framing” 

measure (a subscale of the Adult Decision-Making Competence measure) demonstrated that 

using this Likert-style scale results in greater variability across participants scores, allowing for 

better overall measurement of framing bias (Bruine de Bruin, Parker, & Fischhoff, 2007).  

The problems cover subjects ranging from disease and health risks, financial decisions, 

employment, education, and environmental topics.  The probabilities outlined in each problem 

are varied (ranging from one-third to three-fifths) and based on questions from past studies of 

framed risk choices (Bruine et al., 2007; Kühberger, 1998; Levin & Chapman, 1990; Tversky & 

Kahneman, 1981).  The dependent measure here is a “framing resistance” score aggregated from 

all of the participant’s choices denoting their propensity to deviate from the typical framing bias 

(i.e., to seek risk in the face of loss or avoid risk when facing a gain).  Participants are required to 

press the space bar after reading each trials vignette, which displays the two actions from which 

they can choose, allowing the calculation of participants response time per trial along with 

framing bias. 
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All tasks, with the exception of the WRAT, Numeracy, and CRT measures were 

completed on a PC running E-Prime 2.0 software (Schneider, Eschman, & Zuccolotto, 

2012).  Participants completed the battery of tasks in one session lasting no longer than two 

hours, with an average estimate of one hour and thirty minutes per participant.  The task order of 

the nine measures was randomized across the participants, with the exception of the framing 

measure, which was always administered first. 
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Chapter 4 
 

Results 

Table 1 
Means, Standard Deviations, and Ranges for Task Battery items 

 

Variables 

 

M  

 

SD 

 

Minimum 

 

Maximum 

Framing Resistance -4.32 5.66 -19.00 8 

WRAT 28.87 4.82 18 38 

Numeracy 7.2 2.6 0 11 

CRT 0.68 0.98 0 3 

SMARS 64.92 19.2 28 109 

Rotation Span 26.28 8.41 0 42 

Symmetry Span 27.77 7.94 7 42 

Stroop 169.92 99.47 -94.35 515.46 

Stop Signal 53.66 6.42 20.67 68.33 

Notes.  Stroop values here were calculated participants’ mean congruent trial reaction time 
subtracted from mean incongruent trial reaction time.  Stop Signal values are percent correct. 

 

 Table 1 presents means, standard deviations, and ranges for all measures.  Most measures 

had straightforward scoring mechanisms.  For the WRAT, numeracy scale, and cognitive 

reflection test, the dependent measure was total correct answers.  The SMARS score is the sum 

across all twenty-five questions in the measure, with higher scores indicating higher levels of 

math anxiety.  The dependent measure for the rotation and symmetry span tasks is “partial span 

score.”  Partial span score is the total number of items recalled in the correct order and the 

method preferred for use in individual differences approaches like this current study (Conway et 

al., 2005).  The dependent measure for the Stroop task is the difference in participants’ reaction 

times between incongruent (e.g., the word yellow presented in green) and congruent trials (e.g., 

the word yellow presented in yellow).  A within-subjects t-test was conducted, demonstrating 
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that participants were significantly faster on congruent trials (M = 1011 ms) than incongruent 

trials (M = 1181 ms), t (186) = 23.36, p < .001.  The difference between the two reaction times 

on the Stroop is more appropriate as a dependent measure for the models discussed later, as it 

controls for general differences in participants’ response latencies unrelated to the underlying 

construct of the Stroop (i.e., selective attention).  Higher Stroop difference scores indicate less 

attentional control on the trials.  The dependent measure for the stop-signal task was error rates 

across the three blocks of stop signal trials, indicating the participant’s propensity to inhibit their 

response to the “stop” sound on an individual trial.   

Lastly, the main dependent measure of interest, framing resistance, was calculated using 

a method similar to that in the resistance to framing measure, by calculating how consistently the 

participant answered in accordance with typical samples when facing a framed scenario (Bruine 

de Bruin, Parker, & Fischhoff, 2007).  Remember, when the scenario is framed as a gain, most 

samples are risk averse, versus when a scenario is framed as a loss, where most samples are risk 

seeking.  To calculate this, the six-point Likert scale (1, 2, 3, 4, 5, 6) was converted to a range of 

-3 to 3, wherein negative values on a trial represent responses in line with a framing bias, and 

positive values indicate a resistance to the framing bias.  For example, suppose a participant is 

given the following options and response scale:   

If Program A is adopted, 200 people will be saved.  
 

If Program B is adopted there is a 1/3 probability that 600 people will be saved, and a 2/3 
probability that no people will be saved.  
 
Which program would you use?     
 
 1  2  3  4  5  6 
 Definitely would      Definitely would 
 choose A        choose B 
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Given that this is a positive frame (e.g., “will be saved”) we should expect risk averse responding 

on this trial: options 1, 2, or 3.  These three options represent a susceptibility to framing, and are 

recoded as -3, -2, -1, whereas a choice of 4, 5, or 6 is recoded to 1, 2, or 3 indicating a resistance 

to framing.  Conversely, in the negatively framed version of the same options below (e.g., “will 

die”), we would expect our sample to respond in a risk seeking manner. 

If Program A is adopted, 400 people will die.  
 

If Program B is adopted there is a 1/3 probability that no one will die, and a 2/3 probability that 
600 people will die.  
 
Which program would you use?     
 
 1  2  3  4  5  6 
 Definitely would      Definitely would 
 choose A        choose B 
 

Responses indicating a risk seeking preference in the face of loss; 4, 5, or 6 above, are recoded as 

-1, -2, or -3 indicating framing susceptibility.  Responses indicating risk aversion; 1, 2, or 3 are 

recoded as 3, 2, 1, indicating a framing resistance.  The framing-resistance score for each 

participant is the sum of these values across the fourteen framing trials, with positive total scores 

indicating a general resistance to framing bias, and negative total scores indicating that their 

responses were biased overall and in line with expected framing responses.   

Table 2 demonstrates the correlations across all of the task battery (see Appendix F for 

scatter plots of all predictive measures and framing resistance).  As expected, there was a 

moderate degree of covariance across most measures, especially across the math and arithmetic-

centric tasks.  WRAT performance correlated moderately with the numeracy measure, r = .528, 

p < .001, which should be expected, as much of the first half of the WRAT assesses general 

arithmetic ability, skills required for the general probability calculations of the numeracy 
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measure.  As expected, WRAT score had an inverse correlation with math anxiety scores 

collected via the SMARS, r = -.38, p < .001, consistent with literature demonstrating a 

relationship between math achievement and math anxiety (Beilock & Maloney, 2015).  

Numeracy exhibited a similar inverse correlation to SMARS r = -.344, p < .001.  Additionally, 

both the WRAT and numeracy measures had low to medium correlations with working memory 

performance, with the WRAT correlating moderately with both the rotation span, and symmetry 

span tasks, r = .391, p < .001; r = .403, p < .001, and the numeracy measure having a small to 

moderate correlation with rotation and symmetry span tasks, r = .310, p < .001; r = .304, p < 

.001.  This is consistent with previous work demonstrating a relationship between working 

memory function and mathematical abilities, and the obvious utilization of working memory for 

both basic arithmetic and more procedurally driven forms of mathematics (for review see Moore, 

McAuley, Allred, & Ashcraft, 2014).   

 

Table 2 
Correlations Among Task Battery Measures 

  
Framing 

Resistance 

 

WRAT 

 

Numerac
y 

 

CRT 

 

SMARS 

 
Rotation 

Span 

 
Symmetry 

Span 

 

Stroop 

Framing Resistance 
 

.176* .096 .252** -.166* .175* .186* -.148* 

WRAT 
 

 .528** .446** -.380**    .391**  .403** -.107 

Numeracy 
 

  .430** -.344** .310** .304** -.072 

CRT 
 

   -.319**  .304** .220** -.209** 

SMARS 
 

    -.211**   -.186* .037 

Rotation Span 
 

     .577** -.050 

Symmetry Span        -.001 

Stroop         

* p < .05, ** p < .01.  Stop Signal excluded due to participants performing at chance. 
 

Regarding the working memory tasks, rotation span had an expected high-moderate 

correlation with symmetry span, r = .577, p < .001.  While these two measures are the preferred 
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tasks for obtaining a psychometrically valid measure of working memory (Draheim et al., 2016), 

there is still some question as to whether they tap into different underlying modal constructs.  

That is, the symmetry span task may be more dependent on visuospatial working memory for 

both the processing and memory portions of the task, while rotation span utilizes visuospatial 

resources for the rotation portion but relies on phonological rehearsal for the sequential order of 

the arrows in the memory portion, despite Draheim et al.’s (2016) argument of the contrary.  As 

such, it stands to reason that there are some performance differences within participants across 

the two tasks. 

The three-item Cognitive Reflection Test (CRT) yielded a significant correlation with all 

other predictive measures in the test battery.  Specifically, CRT performance had moderate 

positive correlations with WRAT, r = .446, p < .001, and numeracy scale scores, r = .430, p < 

.001.  CRT performance had a small positive correlation with rotation span, r = .304, p < .001, 

and symmetry span scores, r = .220, p < .01.  CRT was inversely related to Stroop difference 

score latencies, r = -.209, p < .01, indicating as participants performance on the Stroop 

improved, performance improved on the CRT.  Lastly, CRT performance was inversely related 

to math anxiety ratings of the SMARS, r = -.319, p < .001.  While these results are not 

particularly compelling within the purview of this current study, the finding that a simple three-

item measure yields a moderate degree of correlation with tasks across multiple constructs begs 

further discussion. 

Stroop performance, as demonstrated above, yielded nearly no significant relationships 

with other predictive measures, except the CRT.  This appears to be indicative of the notion that 

Stroop taps into a separate component of executive function (i.e., selective attention), and that 
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this attentive ability has some relationship to an individual’s degree of cognitive impulsivity 

demonstrated on their CRT performance. 

Stop signal performance yielded the least interesting results of the test battery, with no 

significant relationships of value to any of the other predictive measures.  Reaction time on the 

task was positively related to Stroop reaction time, r = .206, p < .01, as should be expected when 

comparing the latencies of two reaction time tasks.  The lack of meaningful data here may be due 

to the general difficulty of the stop signal task employed for this experiment.  The mean error 

rate for the task was 53.66% (SD = 6.42), indicating participants were performing at chance in 

their ability to inhibit their response on trials where the stop signal beep was present.  This 

resulted in a leptokurtic distribution, and as such, the data failed to yield enough variability to be 

utilized in the models discussed below.  

Recall that the dependent measure from the framing task was participants’ resistance to 

framing.  Scores on this ranged from -19 to 8 (M = -4.32, SD = 5.66) with negative scores 

indicating an overall susceptibility to framing across the 14 framed vignettes, and a positive 

score indicating a resistance to framing.  Overall the framed vignettes used in the task yielded a 

biased sample, but not to the typical degree found in the studies from where the vignettes were 

aggregated (see Table 3 for bias results by item).  Of the fourteen framed scenarios used in the 

task, nine managed to produce responses in our sample indicative of a group bias; that is, over 

half of the sample responded in line with the predicted framing bias.  Of the five scenarios that 

did not produce overall biased responding, four had negative framing language (i.e., a risk 

seeking bias was expected in the sample, but the data indicates a risk averse sample for that 

item).  Within those nine scenarios that produced a bias, negative frames tended to only produce 

a marginally biased sample (55 – 65% choosing the risky option).  Generally speaking, it seems 
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the positive frames induced more biased responding (risk averse responses) than did negative 

frames (risk seeking responses).  This may be due to a number of reasons addressed in the 

discussion section.   

 

Table 3 
Framing Bias Results by Item 

Item Number Frame Valence Vignette Category 
Percentage of Biased  

Responses in sample 

Replicated 

expected sample 

bias? 

1 positive public health 41.17 % no 

2 positive finance 73.89 % yes 

3 positive public health 71.63 % yes 

4 negative public health 55.23 % yes 

5 negative public health 41.37 % no 

6 negative finance 25 % no 

7 positive personal health 69.61 % yes 

8 positive finance 80.4 % yes 

9 negative public health 52.45 % yes 

10 negative environmental 65.68% yes 

11 positive finance 73.04 % yes 

12 positive public health 56.87 % yes 

13 negative education 47.05 % no 

14 negative public health 47.05 % no 

 

Possibly due to the underwhelming bias yielded overall, the framing resistance scores 

have less compelling correlations with independent predictors within our test battery.  Framing 

resistance had a small but significant correlation with scores on the WRAT, r = .176, p < .05, 

indicating that as math achievement increased so did framing resistance, consistent with the 

hypothesis proposed.  Scores on the numeracy measure did not yield a significant relationship to 

framing resistance, r = .096, p = .225.  The CRT yielded the strongest overall relationship to 

framing resistance, r = .252, p < .001.  SMARS scores yielded a small but expected inverse 
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relationship with framing resistance, r = -.166, p < .05.  Both of the span tasks yielded small but 

significant positive relationships with framing resistance: rotation span; r = .175, p < .05, 

symmetry span, r = .186, p < .05.  Lastly, Stroop yielded a significant inverse relationship with 

framing resistance, r = -.148, p < .05, indicating that participants with a lower framing resistance 

tended to suffer more interference on the Stroop task.  Unfortunately, analyzing correlations 

using only the nine items within the framing task that yielded the expected sample bias did not 

lead to any increase in the strength of relationships between the predictive measures on framing 

resistance.  

Further, recall that reaction times were recorded for both the duration spent reading the 

framing vignette, and for time spent reading and deciding between the two potentional options.  

Partialling from the correlations the average reading time for the vignette, average 

reading/decisoin time for the options, or total time spent across both portions of the trial gives no 

additional insight into the factors mitigating the relationship between the task battery and 

framing resistance.  There is no clear relationship between time spent reading the vignette, r = -

.009, p = .89, time spent on the choices, r = -.016, p = .82, or the sum of both averages across 

trials, r = -.029, p = .69, to framing resistance.  It might be expected that if a dual-process 

approach (heuristic v. calculation) was employed differntially by participants within the sample, 

that the latency time spent reading might disentangle those participants who calculted an 

expected value on a frame from those who simply succumbed to the framing language.  However 

this is not clearly evident in the latency data, nor did these latencies have any clear relationship 

to any of the other predictive measures of the battery. 
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Figure 2.  Full Path Model.  Values on solid lines represent unstandardized regression 
coefficients. 
 

While the correlations between predictors and framing resistance were not particularly 

strong, the large sample size of this study allows the data to be examined in a number of more 

robust multivariate approaches.  As such, a path model was constructed using all variables, 

accounting for covariance across all predictive measures, to examine the influence of our 

predictors on overall framing bias (see Figure 2).  This full path model accounts for shared 

covariance across the predictors, and in doing so reduces the coefficients compared to a standard 

regression approach.  The fit indices for this model however are poor, χ2 (21) = 270.36, p < .001, 

CFI = .000, RMSEA = .261, and the paths in the model do not reach statistical significance, 

likely as a result of the weak relationships between the predictors and framing resistance. 
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Figure 3.  Full SEM Model.  Values on solid lines represent unstandardized regression 
coefficients.  ** p < .01. 
 
 

A structural equation model (SEM) with two latent variables, executive function -

comprised of Stroop, rotation span, symmetry span, and CRT scores - and math profile -

comprised of numeracy, SMARS, and WRAT (see Figure 3) - converges but yields little insight 

or explanatory power over and above the basic correlation matrix or path model.  Rather, the two 

latent variables are not statistically significant predictors of framing resistance.  However, three 

of the four variables comprising the executive measures (rotation span, symmetry span, and 

CRT) each contribute a significant amount of variance to the latent construct executive function, 

indicating Stroop is a poor fit for this construct with the given data.  A more appropriate way to 

bifurcate these may be executive control for the span measures and CRT, and a construct akin to 

selective attention for Stroop.  All three of the math predictors contribute significantly to the 

construct, math profile.  Overall fitness measures for the entire model however are poor χ2 (19) = 

93.914, p < .001, CFI = .699, RMSEA = .151, although they are considerably better than the path 



 

 49 

model. Again, this is likely due to the poor correlations found between the predictive measures 

and framing resistance. 

 

 

Figure 4.  Math Measures SEM model.  Values on solid lines represent unstandardized 
regression coefficients.  ** p < .01. 
 
 

Isolating the math profile construct and observed math measures (see Figure 4) yields 

acceptable fit indices, χ2 (2) = 1.456, p = .48, CFI = 1.0, RMSEA < .001, but it does not quite 

reach statistical significance (p = .16).  A comparable model comprised of only the executive 

function construct and observed measures again yields improved fit indices, χ2 (5) = 11.52, p < 

.042, CFI = .93, RMSEA = .086, but again fails to reach significance. 

Additional models using framing resistance as a dependent measure can be found in 

Appendix G but were excluded from the results section due to some redundancy.  To explore 

additional relationships between executive function and math outcomes, additional models were 

constructed excluding framing resistance from the analysis, instead using math variables as 

dependent measures.  As individual differences methods are typically not employed to examine 



 

 50 

factors like math anxiety or math achievement, this dataset provided a unique opportunity to do 

just that.  These models and the additional discussion around them can also be found in 

Appendix G.   
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Chapter 5 

Discussion 

Framing Bias and Demographically Related Caveats to Present Theory 

 In general, the results of this study fell short of supporting a strong relationship between 

general executive functioning, mathematical proficiencies, and mathematical anxiety to 

individual outcomes in framing bias susceptibility.  The data however is not in support of an 

overall null hypothesis due to the fact that the relationships between our predictive measures 

were small but generally in line with the predictions of the study.  Assuming our sample 

participants were typical and equivalent to the general samples of participants utilized in studies 

of framing bias, the data would lend itself to the conclusion that an individual’s math profile 

coupled with general executive resources contributes a small but significant portion of variance 

to framing bias outcomes, but that there still exists a large degree of unaccounted variance in the 

data to be potentially explained by other individual factors.  If this is the case, what are these 

other factors?  The usual suspects come to mind; general problem solving, motivation, 

personality factors, grit, need for cognition, vigilance, etc.  Undoubtedly, these constructs when 

statistically modelled would contribute some degree of variability to decision making in general, 

but to argue that general measures of cognitive faculty (e.g., span measures and Stroop) or 

cognitive impulsivity (e.g., CRT – which tends to predict heuristic usage well; Toplak, et al., 

2014) coupled with mathematical aptitudes should not account for the majority of variance in 

framing bias is dubious.   

Conversely, it is likely that the present study suffers from a sampling problem.  While the 

relationships between the battery measures and framing bias was not as robust as originally 

predicted, the current sample did not replicate the degree of bias typically found in published 
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studies utilizing the same framing scenarios.  With that in mind, there is a case to be made that 

the biases found within the current sample were largely driven by a subset of the participants 

who possessed the requisite life experience necessary to elicit the expected biases.  And 

subsequently, the reduced framing bias in the sample resulted in less interpretable relationships 

between our predictive measures and framing bias overall.  Of note within the data is the finding 

that within participants twenty-two years of age or older (n = 29, M = 28.56), the basic linear 

correlations between framing resistance and six of our measures is stronger than the relationship 

in the full sample (Pearson’s r: WRAT = .332, numeracy = .285, CRT = .396, rotation span = 

.311, symmetry span = .413, Stroop = -.241).  However, this small subset comprising 15.2% of 

the total participants precludes more robust modelling techniques such as SEM.  The extant 

literature on framing biases, while not typically addressing this explicitly in general studies of 

framing, seems to support this idea that life experience and/or age enhances framing biases.  

Further, age had a significant positive relationship with total framing trial latency, r = .211, p < 

.001, indicating the older the participant, the greater likelihood they spent extra time on the 

framing trials.  Several studies supporting this age-dependent hypothesis are discussed below.  

A recent study examined a single factor from our research battery, numeracy, and its 

relationship to the presentation format, graphical or numerical, of framed scenarios (Kreiner & 

Gamliel, 2017).  Two-hundred and eighty-seven Israeli undergraduates participated in this study 

and gave responses to four framed scenarios (two positive, two negative) presented in an entirely 

visual format (i.e., an infographic) or in a format comparable to the present study; textual 

vignettes with numerical information.  Participants additionally completed a thirteen-item 

numeracy measure similar to the one utilized in the present study.  Curiously, a moderate 

relationship was found between framing bias and general numeracy in the text-based 
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presentation format (r = -.42), indicating as numeracy went up, overall bias as predicted by the 

scenario’s frame decreased.  Recall that framing resistance was not significantly related to scores 

on the numeracy measure and that WRAT performance only yielded a correlation of .176 with 

framing resistance (Note: framing resistance scores can be inverted to indicate a bias score, and 

the relationships are trending in the same direction).  The disparity in the strength of the 

relationship in Kreiner and Gamliel’s study compared to the present data begs the question, why 

did participants in our sample not demonstrate the same relationship between framing bias and 

our mathematical (or executive) measures? 

 When reviewing Kreiner and Gamliel (2017), three key factors stand out.  First, the 

average age of the sample was 24.2 years of age, four years older than the mean age of our 

sample.  Second, the sample was pulled from a small Israeli college comprised of students whose 

focus is on research primarily in robotics, cognition, and marine sciences.  Similarly, Tversky 

and Kahneman’s (1981) initial framing study was likely comprised of more mature students 

having been conducted at Stanford.  And lastly, the four questions participants completed in the 

framing task covered topics only on human papilloma virus prevention via condom use along 

with driving safety.  Collectively, these three factors point to the conclusion that the present 

sample did not demonstrate a comparable framing bias or the relationship between framing and 

numeracy (and perhaps all other factors) based on demographic and life experience factors 

within in the sample.  Given the average age and research focus of the Israeli college students, it 

is likely there are some key differences in the life history and present motivations of Kreiner and 

Gamliel’s sample.  Particularly, these students likely had more experience with factors involved 

in risk mitigation and likely had some demographic differences that resulted in their choice to 

attend a research focused institute – not to mention two years of required military service under 
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their belts.  It is possible that these key differences resulted in an adult sample that possessed a 

more experienced and hardened behavioral approach resulting in a better distribution of bias 

responses when presented with framed scenarios.   

 The results of Ghazal, Cokely, and Garcia-Retamero’s (2014) study would further 

corroborate the hypotheses of the present study, while demonstrating that older, more educated 

samples tend to exhibit a greater framing bias.  After administering the Berlin Numeracy Test 

and a set of framed financial decision problems to a highly educated sample in Holland (n = 

5408; 30% of the sample possessing a master’s degree or above), the data revealed a relationship 

between numeracy-measure performance and framed financial-decision performance (r = .264, p 

< .001).  The strength of this relationship is comparable to the coefficients found across the 

predictive measures of the current studies’ data; however, it is considerably higher than our non-

significant coefficient of .096 for numeracy.  An additional point of interest is the finding that 

Ghazal et al.’s participants exhibited a relationship between time spent on the framing problems 

and framing bias (r = .26, p < .001).  Within the present sample, the older participants spent 

longer amounts of time deliberating on the framing problems, a factor that may have been of 

interest relating to our predictive measures had the older subset of our data not been too small.  

The relationships found between latency and decision making along with numeracy and decision 

making might be indicative that the more numerate participants in Ghazal et al.’s study were 

more likely to calculate an expected outcome value when presented with a pair of framed 

prospects. 

 Also related to our current findings is a study examining age related differences in the 

framing effect (Kim, Goldstein, Hasher, & Zacks, 2005).  Published in the Journal of 

Gerontology, the research aimed to compare differences in framing biases between a college age 
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sample (aged 17 to 28 years, no mean reported) and older adults (aged 58 to 78).  The study used 

two problems, the classic Asian disease problem (item 3 in our framing measure) and a cancer 

treatment problem (similar to item 7 in our measure but with different numerical values).  Kim et 

al.’s young respondents did not demonstrate a reliable framing bias on the Asian disease 

problem, although that question in our measure did elicit a biased response in roughly 71% of 

our sample, while participants responded with a moderate bias on the cancer problem, 

comparable to our data.  Older adults in the study’s sample showed a considerable framing effect 

for both the Asian disease problem and cancer treatment scenario.  Earlier decision-making 

research offers an explanation for such findings. Previous work demonstrates that past 

experience with a subject matter (Johnson & Drungle, 2000) and older adults’ apparent 

propensity to deliberate longer and more thoughtfully on information evoking emotional 

responses through valances in framing (Peters, Hess, & Västfjäll, 2007) may account for 

increased framing biases.  Collectively, studies demonstrating age-related differences in decision 

making and particularly framing bias show that the general effect as reported in early work by 

Kahneman and Tversky may not be a standard universal for adults, and that when exploring 

framing biases, factors such as age and life experience must be taken into account.  Others 

however have argued these findings are a byproduct of limited cognitive resources in adults, 

resulting in their reliance on a heuristic-based approach to decision making (Hess, Rosenberg, & 

Waters, 2001). However, this account is a bit simplistic and fails to account for the work 

demonstrating a reduction in framing biases across educated samples.   

 Multiple studies exploring framing messaging in health care have demonstrated that the 

positive or negative valence of frames differentially affects older versus younger populations 

(Löckenhoff & Carstensen, 2007; Lockwood, Chasteen, & Wong, 2005; Shamaskin, Mikels, & 
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Reed, 2010).  Generally, studies to this end find that older adults typically respond better to 

health care messaging that is framed positively.  For example, an older individual might be more 

likely to engage in self-directed cancer screenings if a pamphlet advocating for such behavior 

used language discussing the positive aspects of prevention versus the negative symptoms and 

outcomes of the pathology.  Further, memory of information within a frame tended to be more 

salient when presented in a positive light within older samples (Shamaskin et al., 2010).  While 

this does not directly address why the negative frames in our sample tended to elicit less bias, it 

may point to a potential age-related effect of negative frames.  It is possible that the younger 

demographic of our sample simply ignores the negative framing language in most instances due 

to inexperience, with this negative framing language grounding the possible outcome in reality 

no greater than a positive frame.  That is, older adults tend to actively inhibit the negative 

language in favor of positive language, while the younger set is merely indifferent.  This 

assertion does need more data; however, the finding that most negative frames in our sample did 

not elicit bias may be spurious and a byproduct of an underwhelming framing effect in 

undergraduates in general. 

 While the goal of the present study was to examine how individual differences across 

multiple cognitive factors account for general biases in framed decision making, others have 

offered theoretical accounts in lieu of behavioral evidence.  In a review, Levin, Schneider, and 

Gaeth (1998) discuss the possible mechanisms underlying the framing effect and argue that in 

general, the framing of a choice in either positive or negative language facilitates the recall of 

corresponding favorable or negative associations in memory. From these associations and 

corresponding affective state changes, we succumb to the expected bias in outcome.  While this 

explanation is parsimonious, there is frankly a lack of compelling behavioral evidence for this 
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claim, particularly considering the underwhelming framing bias encountered in the present 

study’s sample, and the myriad of data from aging research demonstrating the inconsistencies of 

the framing effect across demographics.  Collectively, the research demonstrates framing effects 

are most robust in older, more experienced populations, despite the more general literature 

treating framing biases as a general adult cognitive universal.   

Kahneman proposed a similar theoretical explanation, the What You See Is All There Is 

(WYSIATI), in his popular 2011 work Thinking, Fast and Slow, to account for many biases 

including framing.  This WYSIATI principle is akin to other heuristic theories explaining quick 

knee-jerk decisions reliant on available or representative pieces of episodic memory, but 

explicitly refers to the availability of information within the individual’s attentional scope.  This 

is not too dissimilar from system 1 (heuristic) v. system 2 (thoughtful and procedural) 

approaches to decision making (Kahneman, 2003), but again is ultimately an incomplete account 

of the puzzle of human decision making.  Without explicitly asking participants about their 

decision-making process (a procedure not always employed in decision-making research) or 

finding that magic neuroimaging technique to explicitly monitor the underlying processes in real-

time, the WYSIATI account (and system 1 v. 2 approaches for that matter) is insufficient to 

explain why we make biased judgments, and also does not explain the subsets of research 

samples that do not exhibit the framing bias at all.  However, these explanations may be a 

sufficient theoretical account of the behavior which biased decision makers engage in without 

attempting to explain the underlying cognitive or affective causes.  Given the extant literature on 

the matter (and the present study’s data), these theoretical conclusions are generally poor or 

should be conveyed with an asterisk (e.g., *given sufficient life experience with the framed 

information, participants will mostly demonstrate a bias in line with the framing language).  
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Again, however, it is important to reiterate here that neither of the above accounts explain why 

there is a consistent subset of any framing study sample that does not exhibit a consistent bias.   

 

Framing Bias, Math, and Executive Abilities 

 Despite the underwhelming results within our sample, the data is consistent with general 

trends of the extant literature exploring framing biases.  While not particularly robust, the results 

paint a slightly larger, albeit incomplete, portrait of how executive aspects of human cognition, 

coupled with general mathematical abilities and traits influence individuals’ susceptibility or 

resistance to framing.  Particularly, facets of executive ability - selective attention, working 

memory, and cognitive impulsivity - all demonstrate a relationship with framing resistance.  As 

resources within these domains increase, participants tend to demonstrate a reduction in framing 

bias.  Individuals’ math profiles also have a relationship to framing resistance, particularly as 

math achievement increases and as math anxiety decreases, participants tend to demonstrate a 

reduction in framing bias.  Still there exists a question mark over the causal chain in these 

findings.  Possibly due to the age-related sampling problems of the current data, the modeling 

approaches failed to disentangle independent amounts of covariance across our measures, and 

how these independently contribute to framing susceptibility.  There is a notable dearth of 

individual differences research within the current literature employing batteries of predictive 

measures across executive function and math ability; however, many previously discussed 

studies have tackled independent contributions of executive attributes or numeracy in isolation.   



 

 59 

 

Figure 5.  Theoretical model demonstrating the influence of executive constructs on 
mathematical fluencies and anxiety, and the subsequent influence of this math profile coupled 
with executive function influencing framing bias mediated through age. 
 
 
Given the developmental relationships between executive abilities and mathematical 

achievement, disentangling how these factors relate to framing biases becomes even murkier.  As 

discussed in the introduction, there is a clear influence of general executive abilities on a child’s 

level of math achievement, a relationship that likely persists into adulthood and makes 

determining the influence of one factor over another on problems requiring numerical processing 

rather dicey.  With this in mind, a proposed theoretical model demonstrating the joint influence 

of executive ability and math aptitudes upon framing bias can be seen in Figure 5, wherein 

mathematical proficiencies, particularly procedural understanding of mathematics demonstrated 

via math achievement along with numeracy are both influenced by general executive function, 

comprised of working memory, attentional control, and cognitive impulsivity.  These 

mathematical proficiencies in turn are influenced by and conversely affect the individual 
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development of math anxiety, which is also directly influenced by working memory.  

Collectively, these independent math constructs constitute one’s math profile, which will govern 

the general procedural approach to how an individual utilizes mathematical information in the 

real world.  This math profile, coupled with the internal calculation engine that is executive 

function, then directly influence the individual’s framing resistance, mediated through age.  

Analysis using age as a mediator within the current sample failed to yield any compelling results 

likely due to the small subset of the sample over the age of twenty-one. 

In relation to the above model, the current data adds evidence to the notion that executive 

function and mathematical performance have a relationship that persists into adulthood, 

extending the current developmental literature supporting this early relationship.  A relationship 

between WRAT performance and executive measures should be expected in adulthood, as much 

of the WRAT requires procedural knowledge, and those with a hindered developmental 

trajectory will likely never learn the appropriate procedures.  However, a relationship between 

executive components and numeracy is novel, as basic probability judgments on the numeracy 

measure are essentially reapplication of the same procedures across questions and require only 

strategies typically acquired in elementary school.  Regardless, this may just be a byproduct of 

the pressure of an experimental environment or time constraints of the measure (10 minutes) 

limiting processing fluency.  Further, the working memory measures had a moderate relationship 

to math anxiety.  While evidence demonstrates a relationship between math anxiety and working 

memory in performance outcomes (for review see Chang & Beilock, 2016), the current data may 

support the notion that working memory, presumably a fixed trait, has some direct influence on 

math anxiety outcomes that persist into adulthood. 
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The Curious Case of “Cognitive Impulsivity” 

 One of the curious findings in the data, and arguably cognition as a whole, is the strong 

relationship between the three-item cognitive reflection test (CRT) and the other predictive 

measures in the task battery.  Generally, the CRT elicited moderate relationships with all of the 

other predictive measures in this study, spanning the gamut across cognitive tasks and math 

measures, including math anxiety.  In the behavioral sciences, the CRT has been linked to 

heuristic usage and biases (Toplak, West, & Stanovich, 2011), intuition (Pennycook, Cheyne, 

Koehler, & Fugelsang, 2016), moral judgment (Baron, Scott, Fincher, & Metz, 2015), and even 

demonstrates performance differences as a function of hormones in both men and women 

(Bosch-Domènech, Brañas-Garza, & Espín, 2014; Nave, Nadler, Zava, & Camerer, 2017).  

Particularly relevant to this study, the CRT has been linked to math anxiety, with one study 

concluding that increased math anxiety reduces reflection and performance on the CRT 

(Morsanyi, Busdraghi, & Primi, 2014).  From a researcher’s perspective, the extant literature on 

the CRT raises questions about construct validity.  Is the CRT tapping into multiple domains, 

such that it can be used as a general catch-all correlating with performances across a myriad of 

disciplines?  

 A recent analysis of the CRT’s construct validity utilized a modelling approach to 

exploring factors outside of impulsivity or reflection (Campitelli, & Gerrans, 2014).  To this end, 

the researchers administered the CRT in conjunction with a numeracy measure, syllogistic 

reasoning task, and an actively open-minded thinking (AOT) measure.  Rather than relying on 

the typical assumption that the questions of the CRT relied specifically on impulsivity control 

and the propensity for cognitive reflection, the researchers added a mathematical parameter to 

their factor analysis; “probability of using an adequate mathematical procedure.”  Ultimately the 
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findings demonstrated a better model fit when a mathematical procedure component was added 

to the model design, leading to the conclusion that general numerical fluencies affect 

performance on the CRT.  Pertinent to the data of the present study, this may explain why we 

find such robust relationships between the CRT and other math related measures, as CRT 

performance in some part may be a byproduct of mathematical proficiencies, or at the very least 

indicative of a trait that covaries considerably with mathematical outcomes.  Given the 

relationship between CRT performance and both math performance and anxiety outcomes, there 

is a compelling case to be made for researchers within the domain of mathematical cognition to 

include this short measure when examining factors of math achievement or anxiety. 

 

General Discussion and Methodological Considerations 

 The general findings of this study point in particular directions regarding the 

methodological approaches that should be employed to explore framing biases across samples.  

While the current data shed a small amount of light on individual outcomes in framing biases, 

the inconsistency of bias scores and small relationships between the predictive measures and 

framing bias failed to paint a large picture of the individual causal contributors to framing bias.  

From here, specific methodological approaches should be employed to provide a more complete 

picture of the relationship between executive function, math proficiencies, and framing biases. 

 Researchers examining bias must consider the demographic makeup of their samples and, 

at the very least, choose appropriate questions that their sample will have some familiarity with.  

Particularly, undergraduate samples primarily comprised of freshman are a poor place to start if 

in need of a sample likely to elicit biases on questions of health or financial matters; the two 

topics most often included in framing bias studies.  Experts or industry specific samples may be 
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an opportune place to start if in need of sufficient experience to match the task demands.  In the 

present study, the data may have yielded more compelling results had participation been 

restricted by age group, as evidenced by the small older subset of our data eliciting stronger 

predictive relationships to framing bias.  This would of course drastically increase the data 

collection time window.  Further, to exhaustively model individual differences data with more 

than two latent variables, increasingly larger sample sizes are required, which also becomes an 

impediment to data collection timelines. 

 Additionally, implementing a post-task check that requires participants to report the 

strategy used to make their decision between framed options should be implemented.  Several 

studies, including this paper, have proposed dual-process theories on decision making and the 

effect of framing (Evans, 2003; Kahneman, 2003; Sloman, 1996), and yet almost never do we 

see a post-task check in these studies simply asking participants how they came to a decision.  

While response latencies and covariance structures of data can give a great deal of inferential 

ability to the researcher drawing conclusions, in the matter of framing biases, and decision 

making in general, we are yet to have any conclusive model differentiating who within a sample 

will rely on one process over another or why particular individuals rely on their chosen process 

based on observational data. 

Simon’s (1956) early proposal of satisficing, Tversky and Kahneman’s (1992) “editing” 

and “evaluation” phases of decision making, and Gigerenzer and Goldstein’s (1996) modelling 

efforts all offer elegant explanations of the decision-making process, and yet with half a century 

of research into the matter we still have not found a unified model based on observation.  What 

has been established however is a body of constructs (e.g., working memory, numeracy, 

expertise, age) that clearly relate to online decision-making processes.  Is the lack of 
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conclusiveness a byproduct of the methods?  A review through the individual differences 

literature on decision making will yield many studies combining a handful of quick measures 

generally from a single domain (e.g., numerical skills, reasoning ability, or working memory, but 

rarely in tandem).  At this point it is safe to conclude what measurement choices will yield to 

effects or publishable relationships, but not unified conclusions.  To borrow from Rouder, 

Morey, Verhagen, Province, and Wagenmakers (2016), in the case of framing biases, there might 

be “free lunch” in inference.  

 The goal of the present study was to provide a more thorough framework of how 

mathematical aptitudes and executive components affect framing biases or decision making as a 

whole, but due to limitations in our sample demographic the data came up short.  With this in 

mind, an improved version of the current study should look as follows.  First, a wider age range, 

comprised of a thorough adult sample (ages eighteen to seventy) would allow for appropriate 

analysis of mediation effects of age upon the relationship between executive functions, math 

aptitudes, and framing biases.  Post-task checks should be implemented to examine any direct 

links between self-reported strategy use and directly observed measures of executive ability and 

math performance.  This would add further empirical support to the notion that with higher 

executive ability coupled with math aptitudes we are more likely to rely on an effortful, 

calculated approach and less heuristic based behavior in decision making.    

 

Future Applications 

Framing is still a widely studied topic within journals of marketing and advertising 

research.  Advertisers, guided by past efforts of cognitive psychologists, have realized the 

efficacy in framing their messages to potential consumers, preying on their willingness to engage 
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in risky behavior in the face of loss.  However, not all who apply this research have vulture-like 

intent.  Recent studies have examined how frames can be beneficial to patients in choosing 

between health care options and mitigating their risks (see Gallagher & Updegraff, 2012 for a 

meta-analysis).  Further studies into the individual causal attributes of framing susceptibility may 

help identify how we can mitigate these factors, lending to message framing in more socially 

conscious efforts, resulting in better behavioral outcomes for both health factors, and responsible 

consumer behaviors alike. 

Beyond the obvious academic importance of work exploring the causal factors in framing 

biases and the typical applied use of framing research for marketers, modern computing and 

internet auditing tools offer potentially novel approaches for employing user data to predict 

framing susceptibility.  For example, companies like Amazon already aggregate massive 

amounts of user data to better offer products consumers are likely to purchase based on those 

they have already bought.  This machine learning approach is a standard practice for those 

working with “big data;” however, modern web technology also allows for the aggregation of 

usage habits (e.g., time spent on the portion of a website relative to others, and subsequent 

“impression” data based on user engagement).  The inference we can draw from such data is not 

a far cry from basic processing theories like the eye mind hypothesis, which assumes information 

that people are visually fixated upon is what they are thinking about (Just & Carpenter, 1984).  

That is, if we spend more time on a portion of a website, measured via latency or perhaps mouse 

movements, we are likely giving more attention to that information.  From this, we might also 

infer that longer time spent dwelling on pages or paragraphs in general can tell us something 

specific about processing fluencies of the individual, a crude but possibly effective proxy for 

general executive abilities.  Couple this usage data with the readily available demographic data 
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collected and shared across services like LinkedIn, Facebook, or Google, and the machine 

learning approaches employed to algorithmically select products can also be used to strategically 

frame marketing language to individuals based on the combination of usage habits and 

demographic information.  For example, a cognition professor with an expertise in statistics (as 

gleaned from their LinkedIn data) combined with an above average click-through speed on their 

google results might lend itself to a lower predicted framing susceptibility and, consequently; 

different forms of targeted ads.  It is likely such efforts are already underway combining usage 

data with purchase history and demographic data to more selectively target advertising efforts.  

The framing language of these adverts is a possible next step in the fine tuning of these ad 

deployments, as draconian as it sounds. 

 

Conclusions 

As one of the few studies to jointly examine the individual contributions of mathematical 

ability and executive function upon framing biases, the results support a general conclusion that 

the two subsets of constructs measured - math profile and executive functions - jointly contribute 

to an individual’s resistance to framing.  However, the weak strength of the relationships and 

demographic makeup of our sample points to several methodological considerations in studies of 

framing bias.  Particularly, the age of participants and general life experience with topics 

including finance and health may exert a large influence on the degree of framing bias exhibited 

in a study’s sample.  Due to limitations likely caused by these demographic factors in the present 

sample, it was impossible to disentangle the individual contributions of mathematical traits and 

executive function upon individuals’ framing resistance.  Further studies exploring these 

relationships should consider sampling from populations outside of university subject pools to 
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obtain age distributions spanning from early to late adulthood.  This approach may elucidate 

whether ample executive resources coupled with mathematical proficiencies and sufficient life 

experience lead to a reduction in framing susceptibility.  Specifically, collecting a large sample 

and administering a battery comparable to this study’s measures, comprised of a normal 

distribution of ages ranging from 18 to 70 years of age, and subsequently modeled with 

appropriate multivariate techniques may be sufficient to demonstrate a two-system approach to 

decision making (heuristic v. expected value calculation).  This is a difficult task within the 

purview of current behavioral science methods but potentially exhaustive enough to derive more 

universal conclusions and settle the vast discrepancies among decision making research. 
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Appendix A 
 

Cognitive Reflection Test 

1. A bat and a ball cost $1.10 in total. The bat costs $1.00 more than the ball.  How much 

does the ball cost? 

2. If it takes 5 machines 5 minutes to make 5 widgets, how long would it take 100 machines 

to make 100 widgets? 

3. In a lake, there is a patch of lily pads. Every day, the patch doubles in size.  If it takes 48 

days for the patch to cover the entire lake, how long would it take for the patch to cover 

half of the lake? 
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Appendix B 

Arithmetic portion of the Wide Range Achievement Test 3 (WRAT) 
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Appendix C 

Numeracy Scale 

1. Imagine that we roll a fair, six-sided die 1,000 times. Out of 1,000 rolls, how many times do 
you think the die would come up even (2, 4, or 6)? 
 

2. In the BIG BUCKS LOTTERY, the chances of winning a $10.00 prize are 1%. What is your 
best guess about how many people would win a $10.00 prize if 1,000 people each buy a 
single ticket from BIG BUCKS?  

 
 
3. In the ACME PUBLISHING SWEEPSTAKES, the chance of winning a car is 1 in 1,000. 

What percent of tickets of ACME PUBLISHING SWEEPSTAKES win a car? 
 
4. Which of the following numbers represents the biggest risk of getting a disease? 1 in 100, 1 

in 1000, 1 in 10 
 
 
5. Which of the following represents the biggest risk of getting a disease? 1%, 10%, 5% 
 
6. If Person A’s risk of getting a disease is 1% in ten years, and Person B’s risk is double that of 

A’s, what is B’s risk? 
 
 
7. If Person A’s chance of getting a disease is 1 in 100 in ten years, and Person B’s risk is 

double that of A, what is B’s risk? 
 
8A.  If the chance of getting a disease is 10%, how many people would be expected to get the 
disease out of 100? 
 
8B.  If the chance of getting a disease is 10%, how many people would be expected to get the 
disease out of 1000? 
 
9.   If the chance of getting a disease is 20 out of 100, this would be the same as having a ____% 
chance of getting the disease. 
 
10.   The chance of getting a viral infection is .0005. Out of 10,000 people, about how many of 
them are expected to get infected? 
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Appendix D 

Short Math Anxiety Rating Scale (SMARS) 

Please rate each item in terms of how anxious you would feel during the event specified. 
Use the following scale and record your answer in the space to the left of the item: 
 
Scale: 
1 = Low Anxiety 
2 = Some Anxiety 
3 = Moderate Anxiety 
4 = Quite a bit of Anxiety 
5 = High Anxiety 
 
__1. Receiving a math textbook. 

__2. Watching a teacher work an algebra problem on the blackboard. 

__3. Signing up for a math course. 

__4. Listening to another student explain a math formula. 

__5. Walking to math class. 

__6. Studying for a math test. 

__7. Taking the math section of a standardized test, like an achievement test. 

__8. Reading a cash register receipt after you buy something. 

__9. Taking an examination (quiz) in a math course. 

__10. Being given an additional set of problems to solve on paper 

__11. Being given a set of addition problems to solve on paper. 

__12. Being given a set of subtraction problems to solve on paper. 

__13. Being given a set of multiplication problems to solve on paper. 

__14. Being given a set of division problems to solve on paper. 

__15. Picking up your math textbook to begin working on a homework assignment. 

__16. Being given a homework assignment of many difficult math problems, which is due the next  

time the class meets. 

__17. Thinking about an upcoming math test one week before. 

__18. Thinking about an upcoming math test one day before. 

__19. Thinking about an upcoming math test one hour before. 
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__20. Realizing that you have to take a certain number of math classes to meet the requirements  

for graduation. 

__21. Picking up a math textbook to begin a difficult reading assignment. 

__22. Receiving your final math grade on your report card. 

__23. Opening a math or statistics book and seeing a page full of problems. 

__24. Getting ready to study for a math test. 

__25. Being given a "pop" quiz in a math class. 
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Appendix E 

Framed Risky Decision Problems 

Problem 1 (positive frame) 
Imagine a hospital is treating 32 injured soldiers, who are all expected to lose one leg.  There are 
two doctors that can help the soldiers, but only one can be hired: 
 
If Doctor A is hired, 20 soldiers will keep both legs.  
 
If Doctor B is hired, there is a 63% chance that all soldiers keep both legs and a 37% chance that 
nobody will save both legs.  
 
Which doctor do you recommend?          
 
 1  2  3  4  5  6 
 Definitely would      Definitely would 
 choose A        choose B 
 
Problem 2 (positive frame) 
Because of changes in tax laws, you may get back as much as $1200 in income tax. Your 
accountant has been exploring alternative ways to take advantage of this situation. He has 
developed two plans: 
 
If Plan A is adopted, you will get back $400 of the possible $1200.  
 
If Plan B is adopted, you have a 33% chance of getting back all $1200, and a 67% chance of 
getting back no money.  
 
Which plan would you use?     
 
 1  2  3  4  5  6 
 Definitely would      Definitely would 
 choose A        choose B 
 
Problem 3 (positive frame) 
Imagine that the US is preparing for the outbreak of an unusual Asian disease, which is expected 
to kill 600 people. Two alternative programs to combat the disease have been proposed. Assume 
that the exact scientific estimate of the consequences of the programs are as follows:  

 
If Program A is adopted, 200 people will be saved.  

 
If Program B is adopted there is a 1/3 probability that 600 people will be saved, and a 2/3 
probability that no people will be saved.  
 
Which program would you use?     
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 1  2  3  4  5  6 
 Definitely would      Definitely would 
 choose A        choose B 
 
Problem 4 (negative frame) 
A civil defense committee in a large metropolitan area met recently to discuss contingency plans 
in the event of various emergencies. One emergency under discussion was the following: "A 
train carrying a very toxic chemical derails and the storage tanks begin to leak. The threat of 
explosion and lethal discharge of poisonous gas is imminent. If nothing is done, 36,000 people 
are expected to be killed." Two possible actions were considered by committee. These are 
described below. Read them and indicate which you would choose.  
 
Option A: Would result in the loss of 24,000 lives.  
 
Option B: Carries with it a 1/3 probability of containing the threat with a loss of 0 lives and a 2/3 
probability of losing 36,000 lives. Which option would you choose?  
 
Which program would you use?     
 
 1  2  3  4  5  6 
 Definitely would      Definitely would 
 choose A        choose B 
 
Problem 5 (negative frame) 
The National Cancer Institute has two possible treatments for lung cancer which could become 
standard treatments across the country.  There are adequate resources to implement only one 
treatment program. Read them and indicate which you would favor for national implementation. 
 
Treatment A: Of every 1000 people who get lung cancer, 600 will die.  
 
Treatment B: 2/5 chance that no people of every 1000 who get lung cancer will die, and  
3/5 chance that 1000 people o f every 1000 who get lung cancer will die.  
 
Which treatment would you use?     
 
 1  2  3  4  5  6 
 Definitely would      Definitely would 
 choose A        choose B 
 
Problem 6 (negative frame) 
Imagine that three years ago you bought a house. Six months ago, your home was appraised for 
$36,000 more than you paid for it. Now your employer is transferring you to Chicago, and you 
must sell you house. Unfortunately, the real estate market has declined in recent months and the 
best offer you have is only $12,000 more that you paid for it. You cannot wait for the market to 
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improve; you must sell now. You contacted a real estate broker who has suggested two possible 
options:  
 
Plan A: Sell your house not for the current best offer and lose $24,000 of the appreciation  
 
Plan B: Sell your house at an auction. There is a 1/3 chance you will lose none of the $36,000 
appreciation. However, there is a 2/3 chance that you will lose all of the appreciation.  
 
Which plan would you select?     
 
 1  2  3  4  5  6 
 Definitely would      Definitely would 
 choose A        choose B 
 
Problem 7 (positive frame) 
Imagine that your doctor tells you that you have a cancer that must be treated.  Your choices are 
as follows: 
 
A:  Surgery:  Of 100 people having surgery, 90 live through the operation, and 34 are alive at the 
end of five years. 
 
B:  Radiation therapy:  Of 100 people having radiation therapy, all live through the treatment, 
and 22 are alive at the end of five years. 
 
Which treatment would you choose?  
 

1  2  3  4  5  6 
 Definitely would      Definitely would 
 choose A        choose B 
 
Problem 8 (positive frame) 
Imagine that your client has $6,000 invested in the stock market. A downturn in the economy is 
occurring. You have two investment strategies that you can recommend under the existing 
circumstances to preserve your client’s capital. 
 
If strategy A is followed, $2,000 of your client’s investment will be saved.  
 
If strategy B is followed, there is a 33% chance that the entire $6,000 will be saved, and a 67% 
chance that none of the principal will be saved.  

 

Which of these two strategies would you favor?   
 

1  2  3  4  5  6 
 Definitely would      Definitely would 
 choose A        choose B 
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Problem 9 (negative frame) 
The United States is expecting the outbreak of a new strain of AIDS which is expected to kill 
2000 persons. Two alternative programs were developed to combat the disease. Assume that the 
exact scientific estimates of the consequences of the programs are as follows:  
 
Program A: 1200 people will die.  
 
Program B: 2/5 probability that nobody will die, and 3/5 probability that 2000 people will die.  
 
Which of the two programs do you choose?  
 

1  2  3  4  5  6 
 Definitely would      Definitely would 
 choose A        choose B 
 
Problem 10 (negative frame) 
Imagine that recent evidence has shown that a pesticide is threatening the lives of 1,200 
endangered animals.  Two response options have been suggested.  Review them and decide 
which option you would use. 
 
If Option A is used, 600 animals will be lost for sure.  
 
If Option B is used, there is a 75% chance that 400 animals will be lost and a 25% chance that 
1,200 animals will be lost.  
 
Which of the two options do you favor? 
 

1  2  3  4  5  6 
 Definitely would      Definitely would 
 choose A        choose B 
 
Problem 11 (positive frame) 
A large manufacturer has recently been hit with a number of economic difficulties and it appears 
as if 6000 employees (some salaried and some hourly) will be laid off. The company would 
prefer not to make these layoffs but also must maintain a solid financial position. The vice 
president of production has been exploring alternative ways to avoid this crisis and has 
developed two plans.  
 
Plan A: This plan will save 2000 jobs  
 
Plan B: This plan has a 1/3 probability of saving all 6000 jobs, but has a 2/3 probability of saving 
no jobs.  
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Which plan would you select? 
 

1  2  3  4  5  6 
 Definitely would      Definitely would 
 choose A        choose B 
 
Problem 12 (positive frame) 
Imagine that your community is preparing for an unusual food shortage, which is expected to kill 
60 people through starvation. Two alternative programs to combat the food shortage have been 
proposed. Assume that the exact scientific estimates of the consequences of the programs are as 
follows:  
 
Program A: 20 people will be saved from starvation 
 
Program B: 1/3 probability that everyone will be saved from starvation.  2/3 probability that 
nobody will be saved from starvation.  
 
Which program would you select? 
 

1  2  3  4  5  6 
 Definitely would      Definitely would 
 choose A        choose B 
 
Problem 13 (negative frame) 
Imagine that in one particular state it is projected that 1000 students will drop out of school 
during the next year. Two programs have been proposed to address this problem but only one 
can be implemented. Based on other states’ experiences with the programs, estimates of the 
outcomes that can be expected from each program can be made. Assume for purposes of this 
decision that these estimates of the outcomes are accurate and are as follows… 
 
If Program A is adopted, 600 of the 1000 students will drop out of school.  
 
If Program B is adopted there is a 2/5 chance that none of the 1000 students will drop out of 
school and 3/5 chance that all 1000 will drop out of school.  
 
Which program would you favor for implementation? 
 

1  2  3  4  5  6 
 Definitely would      Definitely would 
 choose A        choose B 
 
Problem 14 (negative frame) 
The National Cancer Institute has two possible treatments for leukemia which could become 
standard treatments across the country.  There are adequate resources to implement only one 
treatment program. 
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Treatment A: Of every 10,000 people who get leukemia, 5,000 will die.  
 
Treatment B: 1/2 chance that no people of every 10,000 who get leukemia will be die,  
and 1/2 chance that 10,000 of every 10,000 who get leukemia will die.  
 
Which of the two treatments would you favor? 
 

1  2  3  4  5  6 
 Definitely would      Definitely would 
 choose A        choose B 
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Appendix F 
 

Scatter Plots of Predictive Measures and Framing Resistance  
(jitter applied to visually offset equivalent scores across participants using ggplot2 in R; Wickham, 2009) 
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Note:  smaller Stroop values indicate slower Stroop performance 
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Appendix G 
 

Additional Models and Discussion 
 

 
Figure 6.  Additional Model 1.  Values on solid lines represent unstandardized regression 
coefficients.  * p < .05, ** p < .01.   
 
 
The model seen in Figure 6 demonstrates a significant relationship between our observed span 

tasks and the latent variable working memory.  Working memory in turn significantly predicts 

math achievement (WRAT).  However, working memory does not significantly predict a 

participant’s math anxiety (SMARS), nor does it have any direct influence on numeracy measure 

performance.  That is, within the model, working memory is showing no relationship to SMARS 

scores.  This does not discount the possible developmental relationships between math anxiety 

and working memory, nor the real time contributions of both to online math performance 

measured with the WRAT.  SMARS scores did significantly predict both math achievement and 

Numeracy scores.  SMARS did not significantly predict CRT performance as we might infer from 

Morsanyi, Busdraghi, and Primi (2014), however the relationship was in the predicted direction 
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(i.e., math anxiety reduces CRT performance) and almost breached significance (p = .064).  Fit 

indices for this model however are poor, χ2 (14) = 81.734, p < .001, CFI = .563, RMSEA = .167.  

A more appropriate model for the data is below. 

 

 
Figure 7.  Additional Model 2.  Values on solid lines represent unstandardized regression 
coefficients.  ** p < .01.   
 

Figure 7 demonstrates a model with good fit to the data, χ2 (7) = 11.495, p = .118, CFI = .977, 

RMSEA = .06.  Here, working memory, math anxiety (SMARS), and CRT all significantly 

influence WRAT performance, and math anxiety and CRT both significantly influence numeracy 

performance.  While this fits the data well, it raises some theoretical questions about why the 

CRT predicts WRAT and numeracy measure outcomes.  If we take this at face value, it would 

indicate that cognitive reflection or impulsivity influences math abilities.  However, it might be 

that the relationship between these measures is more explained by a construct like “need for 

cognition,” which at least one study has linked to CRT performance (Frederick, 2005). 
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Figure 8.  Additional Model 3.  Values on solid lines represent unstandardized regression 
coefficients.  * p < .05, ** p < .01.   
 
 
Of the models constructed to explain framing resistance, Figure 8 results in the best fit indices, 

χ2 (18) = 12.647, p = .812, CFI = 1.0, RMSEA < .001, however the model still fails to yield a 

significant relationship with framing resistance (p = .233).  Here, a latent variable problem 

solving? (potentially, general problem solving ability) influenced by WRAT, numeracy, CRT, and 

working memory.  While this model produces the best fit, there is some uncertainty of what this 

problem solving? construct is, but it serves here as a simple way to pool the variance across our 

measures to produce better model fit.  Fit aside, because there is no clear theoretical reason to 

pool WRAT, numeracy, and CRT performance into a single latent variable, this was excluded 

from the discussion portion of this report. 
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Figure 9.  Additional Model 4.  Values on solid lines represent unstandardized regression 
coefficients.  * p < .05, ** p < .01.   
 
 
Lastly, Figure 9 demonstrates a model including age as a significant predictor of framing 

resistance, but only when excluding items 1, 5, 6, 13, and 14 from the framing bias score.  

Recall, these were the five items on the measure which did not yield overall biased responding in 

the sample.  Age was not a significant predictor in any models constructed utilizing all scenarios 

within the framing measure.  Here, the construct problem solving? again does not significantly 

relate to framing resistance.  Fit indices for this model are acceptable but not as good as the 

model in Figure 8, χ2 (18) = 27.4, p = .072, CFI =t 0.964, RMSEA = .055.   
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